Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex

M. Oberlaender, C.P.J. de Kock, R.M. Bruno, A. Ramirez, H.S. Meyer, V.J. Dercksen, M. Helmstaedter, B. Sakmann

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory-evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical cell types and estimate the number and distribution of their somata, dendrites, and thalamocortical synapses. Somata and dendrites of most cell types intermingle, while thalamocortical connectivity depends strongly upon the cell type and the 3D soma location of the postsynaptic neuron. Correlating dendrite morphology and thalamocortical connectivity to functional responses revealed that the lemniscal afferents can account for some of the cell type- and location-specific subthreshold and spiking responses after passive whisker touch (e.g., in layer 4, but not for other cell types, e.g., in layer 5). Our data provides a quantitative 3D prediction of the cell type-specific lemniscal synaptic wiring diagram and elucidates structure-function relationships of this physiologically releVant pathway at single-cell resolution. © The Author 2011. Published by Oxford University Press. All rights reserved.
Original languageEnglish
Pages (from-to)2375-2391
Number of pages16
JournalCerebral Cortex
Volume22
Issue number10
DOIs
Publication statusPublished - 2012

Fingerprint

Dive into the research topics of 'Cell type-specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex'. Together they form a unique fingerprint.

Cite this