Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes

H. de Wit, A.M. Walter, I. Milosevic, A. Gulyas-Kovacs, D. Riedel, J.B. Sorensen, M. Verhage

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Docking, the initial association of secretory vesicles with the plasma membrane, precedes formation of the SNARE complex, which drives membrane fusion. For many years, the molecular identity of the docked state, and especially the vesicular docking protein, has been unknown, as has the link to SNARE complex assembly. Here, using adrenal chromaffin cells, we identify the vesicular docking partner as synaptotagmin-1, the calcium sensor for exocytosis, and SNAP-25 as an essential plasma membrane docking factor, which, together with the previously known docking factors Munc18-1 and syntaxin, form the minimal docking machinery. Moreover, we show that the requirement for Munc18-1 in docking, but not fusion, can be overcome by stabilizing syntaxin/SNAP-25 acceptor complexes. These findings, together with cross-rescue, double-knockout, and electrophysiological data, lead us to propose that vesicles dock when synaptotagmin-1 binds to syntaxin/SNAP-25 acceptor complexes, whereas Munc18-1 is required for the downstream association of synaptobrevin to form fusogenic SNARE complexes. © 2009 Elsevier Inc. All rights reserved.
Original languageEnglish
Pages (from-to)935-946
Number of pages11
JournalCell
Volume138
Issue number5
DOIs
Publication statusPublished - 2009

Fingerprint

Dive into the research topics of 'Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes'. Together they form a unique fingerprint.

Cite this