
The outermost layer of the human
eye—the cornea, see Figure 1—is of
tremendous importance to good vi-
sion. By the early 19th century, physi-

cians recognized the cornea’s role in the refraction
process. In the present day, several types of refrac-
tive surgery—such as corneal transplants and laser
adjustment of the cornea—have become well es-
tablished as techniques for improving a patient’s
sight. To support these types of surgery, it is es-
sential to have accurate techniques for measuring
corneal shape. However, the systems available for
this task have some serious shortcomings. This ar-
ticle describes how we can use adaptive surface
measurement and parallel cluster computing to
improve corneal measurement instruments.

The conventional approach and its
problems

Most instruments that measure corneal topog-
raphy do so by using the eye to mirror a pattern.
Figure 2a shows the cross section of such an in-

strument.1,2 It consists of a cylinder closed at one
end containing a pattern (the stimulus) that is
brightly lit from the back. The cornea to be mea-
sured is positioned in front of the cylinder’s open
end, while a camera behind the closed end regis-
ters the reflection (Figure 2b). The instrument
reconstructs corneal shape from the distortions
in the reflected image.

The flow diagram in Figure 3 depicts the con-
secutive stages in the data processing. The first
step after data acquisition is pattern recognition,
which involves uniquely localizing and identify-
ing certain positions in the input image (the re-
flection of the stimulus). Subsequently, the tool

66 COMPUTING IN SCIENCE & ENGINEERING

REAL-TIME, ADAPTIVE
MEASUREMENT OF CORNEAL SHAPES

Conventional tools for measuring the shape of the cornea perform poorly when applied to
abnormal eyes. The image processing regularly fails, and the shape reconstruction often
produces inaccurate results. This article describes a single measurement instrument that
could integrate real-time solutions to both problems.

FRANS M. VOS

Delft University of Technology and the Academic Medical Center
HANS J.W. SPOELDER, DESMOND M. GERMANS,
RUTGER HOFMAN, AND HENRI BAL

Vrije University

1521-9615/02/$17.00 © 2002 IEEE

FEATUREA D A P T I V E S U R F A C E
M E A S U R E M E N T

Figure 1. Cross section of the human eye. The
cornea constitutes the most anterior part.

Choroid

Retina

Optic nerve

Ciliary body

Iris

Lens

Sclera

Cornea

MARCH/APRIL 2002 67

models corneal shape from a correspondence of
points on the stimulus and the sensor device; this
step is called shape reconstruction.2,3 In the last
step, visualization, the estimated shape is visual-
ized in a graphical user interface.4

However, this conventional measuring tech-
nique does not work ideally. First, the stimulus is
designed to yield a certain desired reflection specif-
ically with the average, normal cornea. Pathologi-
cal eyes, however, produce reflections with severe,
unpredictable distortions that can foil the pattern
recognition software and cause the measurement
to fail. Second, to support use in clinical practice,
these tools generally implement the shape recon-
struction step with a lookup table approach,3 which
can lead to severe errors.5,6 Nonlinear techniques
have demonstrated greater accuracy but are not
popular because of their poor execution time.

Improving the conventional

To address the problem the conventional ap-
proach has with abnormal corneas, we will look
into the development of a measurement system
that adapts the stimulus to the cornea’s shape.
The adaptation aims to nearly always register a
regular pattern, even with deformed shapes. Fig-
ure 4 gives a functional sketch of a system im-
plementing this approach.

Clearly, any approach must also incorporate ac-
curate shape modeling—through nonlinear shape
reconstruction, for example. Moreover, the entire
process must permit real-time execution to allow
practical applications such as surgery. This means
that the total measurement time should be on the
order of a few seconds. (Such a “soft” real-time
constraint is acceptable because the eye is fixated
during intervention.) Meeting this prerequisite
while using accurate modeling techniques is a

challenging problem that we address through par-
allel cluster computing.

Stimulus adaptation

As we mentioned, existing cornea topographs

ci

CCD

Stimulus

Eye
ck

si

sk

Figure 2. Conventional technology: (a) crosscut of a cornea topograph. The eye mirrors a pattern (stimulus), brightly lit
from the back by neon tubes. (b) A charge-coupled device camera (CCD) registers the reflection.

(a) (b)

Pattern
recognition

Shape
reconstruction

Visualization

GUI

Data
acquisition

Image
coordinates

Surface model

Image

Figure 3.
Measuring
the shape of
the cornea:
a schematic
rendering
of the data-
processing
steps, from
data
acquisition
to the
representation
of the results
in a graphical
user interface.

Regular?
No

Yes

Reflection
registration

Pattern
recognition

Stimulus
projection

Stimulus
generation

reconstruction
Shape

Figure 4. Adaptive system for corneal measurement, functional
scheme.

68 COMPUTING IN SCIENCE & ENGINEERING

use a fixed stimulus pattern that yields the desired
reflection for the average, normal eye but distorted
reflections for pathological corneas. When the dis-
tortion exceeds the dynamic range of the pattern
recognition software, the measurement fails. To
obviate this problem, we can adjust the stimulus
to fit individual eye characteristics. We propose a
scheme in which the topograph iteratively adapts
the stimulus to arrive at a desired pattern (Figure
5). The obvious benefit is that this scheme results
in extremely robust pattern recognition. For such
a system to be useful in surgical practice, however,
the adaptation must take place in real time.

In earlier studies, we demonstrated the useful-
ness of a chessboard stimulus (see Figure 2b)7 com-
posed of quadrilaterals sharing lines between
common vertices (that is, at the crossings). In this
stimulus, adjustable parameters are the number
of quadrilaterals and the positions of the vertices.

Here’s how stimulus adaptation works: In its most
simplified state, the prescribed pattern consists of
four squares (see Figure 5), giving only nine ver-
tices in the image. Once we recover the feature lo-
cations from the image, we adjust the stimulus pat-
tern by moving each vertex (which we’ll describe
later). As soon as a regular chessboard is registered,

we refine the number of quadrilaterals, going from
22 to 42 to 82, and so on. (For optimal tuning, we
will consider implementing partial refinement in
the future.) Stimulus shape and reflected image are
inversely related in this process, as regular squares
become deformed quadrilaterals and vice versa.

A priori assumptions on the object shape can
limit the search space for each vertex. For instance,
we can calculate the center of such a search area
as the location upon reflection from the average
human cornea (a sphere with a radius of 8 mil-
limeters). The maximal variation in object shape
determines the outer limits. To locate the vertices,
we use a matched-filter approach.1 Because we can
expect a better location prediction as the adapta-
tion proceeds, we can halve the search space each
time we refine the pattern. Accordingly, we can
also reduce the size of the matched filter.

Thus, we come to the following algorithm:

1.Generate a stimulus with four squares.
2.Register its reflection from the object (eye)

to be measured and find the vertices in the
image (using the matched-filter technique1).

3.Adjust the positions of the vertices to mini-
mize the deviation from the desired geome-
try (a regular chessboard).

4. Increase the number of quadrilaterals and
repeat steps 2 and 3 until you cannot recover
one of the quadrilaterals’ vertices or until
the number of quadrilaterals exceeds a pre-
set threshold.

To regularize the pattern, we adopt a strategy
in which the vertices’ positions are iteratively ad-
justed as follows (Figure 6). Suppose that at first
the kth vertex on the stimulus (sk

0) is reflected
to a position (ck

0) on the CCD. Additionally, let
(ck

t) be the target point in a regularized reflec-
tion. Initially, the vertex’s position in the stimu-
lus is changed with a fixed (small) step (δk

0).
Consequently, sk

1 = sk
0 + δk

0, a point that will
correspond to position ck

1 in the CCD. Subse-
quently, we can obtain a better estimate for the
step vector by linear extrapolation:

(1)

The division and the product in Equation 1
address vector elements individually to yield a
new vector.

Thus, δk
1 can update sk

1, after which the process
repeats until deviation from the desired position
falls below a preset threshold.

δ δk k

k
t

k

k k

1 0
1

1 0= ⋅
−
−

c c
c c

.

ReflectionStimulus

Cornea

1 Adaptation

2 Refinement

3 Adaptation

Vertex (crossing)
and search

space

Figure 5. Graphical representation of the proposed algorithm.
Successive steps deform the stimulus pattern to make the reflection
regular and then refine the pattern. The search space for a vertex
becomes smaller by a factor of two after refinement; the
regularization allows better vertex position prediction.

MARCH/APRIL 2002 69

Shape reconstruction

Real-time, adaptive corneal measurement re-
quires fast shape reconstruction. Practitioners
rarely use nonlinear reconstruction techniques
in practice because of their slow execution. A so-
lution to this problem is to parallelize the code.
This section will focus on the algorithm, and
we’ll later evaluate its implementation.

Basic theory
To represent corneal shape, we follow Marc

Halstead and colleagues,4 using a biquintic ten-
sor B-spline surface as a model. Such a B-spline
surface (h) is defined as a piecewise description,
which we can think of as a patchwork quilt. Each
piece of surface—each patch—is a polynomial of
preset degree; in our application, the degree is 5.
The sum of scaled basis functions gives the full
surface:

(2)

where m1 and m2 are the numbers of patches; n
the degree of the spline (for us, 5); ck the inde-
pendent variables; bij the spline basic function; and
dij their weights. In our approach, ck corresponds
to the positional coordinates of a vertex in the
CCD. After the double sum’s linearization, sur-
face function evaluation merely involves the vec-
tor product of parameters d and basic functions b.

To estimate the parameter vector d, we need
a function that expresses how well a given rep-
resentation models the data. The “Definition of
the Residual Function” sidebar contains a proper
definition of the one we use; for now, let’s con-
sider it an abstract function of the parameters
that sums a residual function r over all vertices,

(3)

We estimate the model’s parameters by mini-
mizing Equation 3. To this end, standard non-
linear regression techniques are available.8 All
these approaches iteratively update the parame-
ters from a given starting point to let the sum of
the squared errors converge to a minimum. In
the Levenberg-Marquardt method that we use,
we find the direction vector τ that updates the
current parameter by solving the equation,

(4)

Here, r(d j, ck) represents the residual vector
(considering each vertex ck in t he CCD) for the
estimate of the parameters d j after j iterations. J
is the Jacobean matrix of the residual function
that we can calculate using a finite-differencing
method, and λ is a weighting parameter that is
conventionally taken small. To calculate the in-
verse of JTJ, we first determine a QR decompo-
sition of J (J = QR), after which

(5)

Time complexity
Later, we’ll demonstrate how to implement the

minimization of the residual function in parallel.
But first, to set an objective for the speedup to be
gained, we’ll explore the performance of a se-
quential implementation. We can easily partition
the algorithm into the four main segments that
consume most of the reconstruction time (tr):

1. Initialization—precomputation of the spline
basic functions. (See Equation 2: because each
position ck is fixed, we can precompute bij.)

() .J J J R QT T T− −=1 1

() ((,)).J J I JT T j
k+ =λ τ r d c

SSE r k
k

() (,).d d c= ∑

h k ij
j

m n

i

m n

ij k(,) () ,d c d b c d b= ≡ ⋅
=

+

=

+

∑∑
11

21

Stimulus (LCD)

s0

Reflection (CCD)

c0

s0

s1

ct

c0

ct

c1

s1 c1

s2

δ 0

δ1 δ
k
0 ct c1–

c1 c0–
=

1 Initial guess

2 Linear
 extrapolation

ct

Cornea

Figure 6. Iterative adjustment of a vertex in the stimulus to obtain
recovery in the target position in the CCD. Initially, a fixed step
modifies the position. Subsequently, we apply linear extrapolation.
(For simplicity, this drawing omits index k, used in the text.)

70 COMPUTING IN SCIENCE & ENGINEERING

2.Calculation of the Jacobian matrix J (in
Equation 4).

3.Calculation of the QR decomposition of the
Jacobian matrix (Equation 5).

4.Calculation of the current residual vector
r(d j, ck) (in Equation 4).

We execute segments 2 through 4 of this
process once every iteration to update the para-
meter vector (by τ, through Equation 4). Con-
sequently, tr is given by

(6)

in which tx is the execution time for program
segment x, and the overbar denotes normaliza-
tion by the number of iterations n (to update the
parameter vector d j). The normalized time per

t t n t t t t

t n t t
r init Jacobian QR QR rest

init iter rest

= + ⋅ + + + =

+ ⋅ +

()

,

In
itia

liz
at

ion

200

160

120

80

40

0

Calc
ula

tio
n

of

Ja
co

bia
n

m
at

rix

QR d
ec

om
po

sit
ion

Calc
ula

tio
n

of
 cu

rre
nt

re
sid

ua
l v

ec
to

r

6×6 patches,
3,747 data points

Oth
er

A
bs

ol
ut

e
ex

ec
ut

io
n

tim
e

(s
)

F
ra

ct
io

n
of

 th
e

tim
e

fo
r

re
co

ns
tr

uc
tio

n
t r

(%
)

65

52

39

26

13

0

Figure 7.
Distribution of
the execution
time over the
main parts of
the shape
reconstruction
program for a
representative
case.

Definition of the Residual Function
The starting point for modeling corneal shape is an un-

ambiguous point-to-point relation of positions at the stimu-
lus and at the sensor device. At the sensor site, these posi-
tions are defined as the crossings in the chessboard, which
should be recovered through image processing. To estab-
lish the aforementioned relation, such crossings must be
uniquely identified. In static studies—that is, when only a
single registration of the pattern is available—redundant in-
formation (such as PRBA color encoding) is necessary to en-
able this.1 With an adaptive approach, proper tracking of
the sequence of patterns should allow the identification,
ruling out the necessity of color coding. At the stimulus, the
calibration must determine the exact position of vertices.

Suppose a position si on the stimulus is reflected on the
cornea at a point ck on the charge-coupled device camera
(CCD, see Figure A).
Given a surface model
with parameters d, we
can calculate a point sk′
on the stimulus that
would also be registered
at ck when mirrored to
the model. We do this
by simple backward ray-
tracing. First, we calcu-
late the position where a
primary ray through ck

and the lens center
crosses the surface
model. Subsequently,
we determine the
surface normal in this

position. We generate a secondary, reflected ray by mirror-
ing the primary ray around the surface normal, after which
we find sk’ as the intersection of the secondary ray with the
stimulus.

We define the residual function as the distance between
sk and sk’ summed over all unique points:

Reference
1. F.M. Vos et al., “A New PRBA-Based Instrument to Measure the Shape

of the Cornea,” IEEE Trans. Instrumentation and Measurement, vol. 46,

no. 4, Aug. 1992, pp. 794–797.

SSE d s sk k
k

() .= − ′∑ 2

CCD Lens

Object

Model (h)

z

O

ck

sksk'

y

x
Main (or z) axis

Stimulus

Figure A. Outline of the residual model function: sk is a point (observation) on the stimulus that is
registered at c on the CCD (independent variable); sk′ also results in registration at c when mirrored to an
instance of the model function h. The lens center is the coordinate system’s origin (O).

MARCH/APRIL 2002 71

iteration is given by titer.
Figure 7 shows the performance of these parts

of the algorithm (measured on a 200-MHz Pen-
tium Pro configuration) in absolute time and as a
percentage of the total. We obtained this data by
modeling a test object using 121 parameters
(that is, 6 × 6 patches). The stimulus contained
64 × 64 squares. The algorithm missed vertices
only in the periphery of the reflected pattern,
yielding 3,747 data points. (The maximum num-
ber that can be detected is (64 + 1)2 = 4,225.) In
this representative case, total execution time was
322 seconds, comprising 12 iterations.

Now let’s turn to parallelization. Clearly, the
time spent in the iterations—to calculate the Ja-
cobian matrix and its QR decomposition—con-
sumes the largest part of the total execution
time. The initialization segment is trivial to par-
allelize, yielding a linear speedup, so we’ll focus
on calculating J and the QR decomposition.

The algorithm’s execution time is a function
of the numbers of input data points and parame-
ters (which determine the Jacobian matrix’s
height and width). Previous practical experi-
ments using a fixed stimulus resulted in 1,000 to
4,000 data points.1 The shadow of the patient’s
nose and forehead can partially occlude the re-
flection (see Figure 2), so the algorithm detects
only a fraction of all vertices. The shape to be
measured determines the number of parameters.
A B-spline surface consisting of 4 × 4 patches can
well approximate a regular surface such as a
sphere. Pathological surfaces may require as
many as 8 × 8 patches.

We varied the data size experimentally by sam-
pling every second, third, and fourth point from
the 3,747-element data set described earlier.
Consequently, the original set was down-
sampled to 1,876, 1,258, and 944 elements. Fig-
ure 8 shows that the relation between the time
per iteration versus the numbers of data
points and parameters is approximately linear.

The whole system’s performance should be on
the order of a few seconds to allow practical
measurement. To meet this requirement, each
iteration should execute on a subsecond scale.
For example, to take 0.5 seconds per iteration,
we would need a speedup of approximately 80
for the case we described (169 parameters and
3,747 data points). Henceforth, we’ll use SUx to
denote the quotient of sequential and paral-
lelized execution time of program part x—that
is, the speedup achieved through parallelization.

Feasibility

The feasibility of our approach depends on the
execution time for the entire process. Total mea-
surement time (ttot) consists of the sum of the
times for a full stimulus adaptation (ta) and then
shape reconstruction (tr):

ttot = ta + tr (7)

Additionally, the measurement process involves
two types of refinement: we refine the stimulus
pattern via more quadrilaterals and the B-spline
model by incorporating more patches.

Stimulus adaptation
To evaluate our stimulus adaptation approach, we

built the system that Figure 9 shows schematically.

Instrumentation. For stimulus generation, we use
the LCD screen of a Sony XV-M30E portable
video camera. This device’s resolution is 382 ×
240 pixels at dimensions of 62 × 46 mm. A 350-
MHz Pentium II system generates the input
stimulus, which the LCD screen displays via the
monitor signal. To accommodate the difference
in resolution of the screen and the LCD we use
a VHX 470 Scan Vision scan line converter that
converts computer signals into video. A Pana-
sonic GP US502 camera registers the reflection,

()t iter

90 110 130 150 170

t
se

qu
en

tia
l

ite
r

3,747

1,876

1,258

944

Number of parameters Number of data points

40

30

20

10

0
1,000 2,000 3,000 4,000

t

(S
)

(S
)

se
qu

en
tia

l

ite
r

169

121

81

40

30

20

10

0

(b)(a)

Figure 8. The
time per
iteration

as a
function of (a)
the number of
parameters
and (b) the
number of
data points.

()t iter
sequential

72 COMPUTING IN SCIENCE & ENGINEERING

and a Matrox Meteor frame-grabber digitizes
the recorded image. All image processing takes
place on the Pentium II configuration.

Time complexity. Execution time for stimulus
adaptation (ta, see Equation 7) depends on the
LCD screen’s update frequency (tLCD), the
CCD’s integration time CCD (tCCD), and the im-
age-processing time. Because both the LCD’s
update frequency and the CCD’s integration
time are fixed at 40 ms per image, the imple-
mentation’s effectiveness is visible only in the
image-processing execution time. Particularly,
the implementation’s performance depends on
the level of refinement (which determines the
total number of vertices), the time to locate a
vertex, and the number of iterations to arrive at
a regular pattern (see Figure 5).

A good approximation of the time to do the
full stimulus adaptation (ta) is

(8)

where l is the total number of refinement levels,
tc(n) is the time to locate vertices at refinement
level n, and R(n) expresses the number of itera-
tions it takes to regularize the pattern at level n.

Here, we will determine tc (n) and explore the
behavior of R(n) to discover the characteristics
of ta. We monitored these numbers while mea-
suring three test objects: a flat surface, an ellip-
soid, and a sinusoidally shaped surface (an object
with a small protrusion simulating a deformity).
We adopted four levels of refinement to arrive
at 256 quadrilaterals.

Table 1 shows time tc(n) for locating vertices at
each refinement level. Although the number of
crossings increases exponentially with each level,
this effect is more than balanced by the shrinking
search spaces and smaller matched filters. Con-
sequently, the execution time falls back dramat-
ically at higher levels of refinement.

Table 2 shows the number of iterations R(n)
for each level of refinement before arriving at a
regularized reflection. At the first level (four
quadrilaterals), the shape adaptation is the most
cumbersome. Subsequently, position prediction
is already so reliable that only a few iterations
suffice. After level 3, it takes just one iteration to
achieve regularization.

Clearly, regularization requires more steps as
the object shape exceedingly deviates from lin-
earity (going from flat to sinusoidal surface shape).
This is to be expected, because the algorithm as-
sumes a linear transformation from stimulus to
reflection upon shape adaptation (Figure 6).

From Equation 5, using tLCD = tLCD = 0.04 sec-
onds and the data from Table 1 and Table 2, we
find total execution times of 1.2 seconds for the
flat surface, 2.4 seconds for the ellipsoidal sur-
face, and 3.4 seconds for the sinusoidal surface.

Shape reconstruction
Nonlinear shape reconstruction has proved

too slow for surgical applications, so the effec-
tiveness of parallelizing this step crucially affects
our instrument’s overall feasibility.

Implementation. In a sequential implementation,
calculating the Jacobian matrix consumes the
largest part of the execution time (about 65 per-

t t n t t R na c
n

l

LCD CCD= + +
=
∑(()) (),

1

LCD
screen

Scan converter

Framegrabber

Pentium II PC

3D video card

Light source

Camera
Object

Figure 9. Experimental system configuration for stimulus
adaptation, schematic drawing.

Table 1. Time to localize crossings at various
refinement levels.

Refinement level (n) tc(n) (milliseconds)

1 162
2 111
3 78
4 2

Table 2. Number of iterations for adaptation of
the stimulus to a test object.

Object R(1) R(2) R(3) R(4)

Flat 3 1 1 1
Ellipsoid 6 3 2 1
Sinusoid 1 3 2 1

MARCH/APRIL 2002 73

cent, see Figure 7). It requires (n × m) indepen-
dent evaluations of the residual function (with n
representing the number of data points and m
the number of spline parameters). Therefore,
parallelization is an obvious way to speed up this
part of the algorithm. Clearly, to get a speedup
exceeding a factor of 3 (about 100/(100 – 65), by
Amdahl’s law) for the full program, we must par-
allelize the other parts as well.

Parallel calculation of the Jacobian matrix
merely involves parceling out the individual cal-
culations to the available processors. We can ap-
ply the same strategy to the assessment of the
current residual vector, which involves n inde-
pendent calculations, as described earlier. For a
technique to parallelize the QR decomposition
of the Jacobian matrix we refer to work by Gene
H. Golub and James M. Ortega.9

We implemented the parallel algorithm in
Orca,10 a language for parallel programming on
distributed-memory systems, and we tested the
program on a cluster computer running the Linux
operating system. Each node contains a 200-MHz
Pentium Pro processor with 128 Mbytes of inter-
nal memory. The processors are connected by a
1.2-gigabits/second Myrinet network.

Time complexity. To explore the parallelized re-
construction algorithm’s time complexity let’s
first look into our implementation’s efficiency to
identify the limiting factors.

Figure 10 shows SU gained for each program
part when we use increasingly more processors.
We obtained these results by modeling the sinu-
soidal test object through a B-spline with 6 × 6
patches using 3,747 data points (see Figure 7 for
the sequential result).

From the linear relation between number of
processors and SUJacobian, it’s clear that the Jaco-

bian matrix calculation is implemented efficiently
(Max(SUJacobian) = 60). However, SUQR reaches a
maximum of about 20, and SUcur_res reaches a
maximum of about 10. These program segments
restrict the total speedup per iteration (SUiter).

Figure 11 depicts the net result per iteration
(SUiter) for various numbers of data points and
parameters. Obviously, the speedup improves as
the number of data points increases (Figure 11a).
In contrast, the difference when using more pa-
rameters for the B-spline seems insignificant
(Figure 11b). From these curves’ profiles, we
concluded that speedup is at its maximum with
64 processors. The limiting factors are the QR-
decomposition and residual vector calculations.

Figure 12 gives the time per iteration (titer)
with the program running on 64 processors to
obtain maximal speedup.

The complete picture
Now, let’s explore the consequences of the re-

sults we’ve presented for the total measurement
time (ttot). Consider the two cases of the ellip-
soidal and the sinusoidal surfaces, representing
a normal and a pathological eye. The full mea-
surement time for each object is given by the

0 10 20 30 40 50 60 70

S
U

(a
rb

.u
ni

ts
)

Number of processors

60

50

40

30

20

10

0

121 parameters, 3,747 data points

Jacobian

QR

Cur res

Total

Figure 10.
Speedup (SU)
of the entire
reconstruction’s
main segments
as a function of
the number of
processors.

0 10 20 30 40 50 60 70

S
U

ite
r

Number of processors

30

25

20

15

10

5

0

121 parameters

3,747

1,876

1,258

944

0 10 20 30 40 50 60 70

S
U

ite
r

Number of processors

30

25

20

15

10

5

0

3,747 data points

169

121

81

(a) (b)

Figure 11. Speedup per iteration (Suiter) as a function of the number of processors for (a) the surface
model’s complexity and (b) the input data set’s various sizes .

74 COMPUTING IN SCIENCE & ENGINEERING

sum of the times to do stimulus adaptation and
shape reconstruction (see Equation 7).

The stimulus adaptation took 2.4 seconds for
the ellipsoidal object and 3.4 seconds for the si-
nusoidal object (measured on a 350-MHz Pen-
tium II system). The time per iteration for shape
reconstruction strongly depends on the numbers
of data points and parameters (see Figure 12,
tested on the 200-MHz Pentium Pro cluster con-
figuration). We can obtain a good approximation
of the ellipsoid with a B-spline surface of 4 × 4
patches (81 parameters). The sinusoid requires 8
× 8 patches. Multiplying the time per iteration
by their total number gives the approximate
shape modeling execution time (for complete-
ness, we must also add initialization time).

Table 3 summarizes total measurement time
ttot for the test objects with a varied number of
data points.

It might come as a surprise that the total exe-
cution time does not grow with larger numbers
of data points. This is because of the more effi-
cient implementation (greater speedup) with in-
creasing data size, as Figure 12 illustrates. Other
small variations occur because of fluctuations in
the number of iterations.

For the ellipsoid, our system well approxi-
mates our goal, achieving response times on the
order of a few seconds. In contrast, the mea-

surement time of the sinusoidal object deviates
by a factor of 3 (see Table 3). As the times for
stimulus adaptation are comparable—2.4 versus
3.4 seconds—it is mainly the nonlinear recon-
struction that needs further improvement.

Alternatively, we might distinguish an initial
starting period from the steady-state situation.
The numbers we’ve reported so far apply to situ-
ations involving a significant learning period. As
soon as an accurate model of the cornea can be
established, we might obtain a much quicker re-
sponse with small eye movements. In that case,
the stimulus adaptation should require fewer it-
erations to regularize. From Equation 8 and Table
1, we can deduce that the surplus execution time
is on the order of 0.1 seconds. Also, we could fa-
cilitate the shape reconstruction by starting with a
good approximation of the measured shape. From
Figure 12, we conclude that the extra modeling
time incurred by not starting with an approxima-
tion is on the order of a few seconds.

Although we determined that speedup for our
shape reconstruction process is at its maximum
with 64 processors, a low-cost, 64-node config-
uration is not yet commercially available. How-
ever, computers containing four to eight proces-
sors are beginning to appear on the market. To
give an impression of the speedup that we can
expect in the near future, we ran our program

90 110 130 150 170

t
pa

ra
lle

l

ite
r

3,747

1,876

1,258

944

Number of parameters Number of data points

1.4

1

0.6

0.2

1.4

1

0.6

0.2
1,000 2,000 3,000 4,000

t
pa

ra
lle

l

ite
r

169

121

81

(b)(a)

Figure 12. Time per iteration on a parallel computer (a) as a function of the number of parameters for
variably sized input data sets and (b) as a function of the number of data points for varying numbers of
parameters.

Table 3. Total test object measurement time using various numbers of data points.

Number of data points Ellipsoid Sinusoid

ttot (seconds) Number of iterations ttot (seconds) Number of iterations

944 5.8 12 17.1 12
1,258 6.1 12 17.2 12
1,876 6.0 10 15.8 9
3,747 7.2 10 20.3 10

MARCH/APRIL 2002 75

on a 600-MHz Athlon system. As a preliminary
test, we had the system model a sinusoidal ob-
ject using 3,747 data points and 121 parameters
(as in Figure 7). Whereas the reconstruction on
the Pentium processor took 322 seconds in to-
tal, the Athlon configuration executed it in 116.7
seconds. Apparently, the speedup is clock-bound:
600 MHz/200 MHz ≈ 322/116.7. Thus—disre-
garding communication time for simplicity—
just using a more up-to-date processor could
bring the response times into a reasonable realm
for practical use.

With normal corneas, the full pro-
gram for the instrument we pro-
pose will take between 5.2 and
7.8 seconds to execute—a rea-

sonable time for surgical application. However,
in the most complicated situations the system
cannot meet the goal of executing within a few
seconds. Nevertheless, the difference amounts to
no more than a factor of 3. We expect to be able
to bridge that last, small gap in very near future.

Our discussion so far has disregarded our in-
strument’s accuracy. One of us (Frans M. Vos)
described an error analysis of a very similar in-
strument elsewhere.2 In essence, all our errors
but one are identical to this earlier description.
The previous experiments using test objects
showed an accuracy on the order of 1 µm.2 A
new source of error that we have not investi-
gated, however, is the discretized stimulus pat-
tern (via the LCD screen). In practice, only at a
high resolution (64 × 64 quadrilaterals, a quar-
ter of the LCD’s resolution), the reflection
sometimes shows irregularities when measuring
deformed objects. We expect that we can solve
this problem by using state-of-the-art LCD
screens that currently come with a much higher
resolution.

Our experimental use of test objects was
somewhat simpler than real cornea measure-
ments because we had no occluding effect of eye
or nose shadows. Consequently, we could adopt
a straightforward strategy in which the program
would cease shape adaptation as soon as it could
not detect a vertex in the reflection.

Our current work to miniaturize the instru-
ment to enable practical measurements also in-
volves implementing more sophisticated stimu-
lus adaptation by local refinement. Although this
article serves as a proof of principle, we hope that
our miniaturization work will prove that our in-
strument can measure real corneas as well.

Acknowledgments
Several undergraduate students made significant
contributions to this work. In particular, we thank Hamid
Taikandi for the implementation in Orca. We also
gratefully acknowledge Rob van der Heijde and Frans
Groen for their contributions to discussions on the subject.

References
1. F.M. Vos et al., “A New PRBA-Based Instrument to Measure the

Shape of the Cornea,” IEEE Trans. Instrumentation and Measure-
ment, vol. 46, no. 4, Aug. 1992, pp. 794–797.

2. F.M. Vos, A System for Measuring, Modeling, and Reconstructing
Corneal Shapes based on Pseudo Random Encoding, doctoral dis-
sertation, Physics Department, Vrije Universiteit, Amsterdam,
1998.

3. S.A. Klein, “A Corneal Topography Algorithm that Produces Con-
tinuous Curvature,” Optometry and Vision Science, vol. 69, no.
11, Nov. 1992, pp. 829–834.

4. M.A. Halstead et al., “A Spline Surface Algorithm for Recon-
struction of Corneal Topography from a Videokeratographic Re-
flection Pattern,” Optometry and Vision Science, vol. 72, no. 11,
Nov. 1995, pp. 821–827.

5. S.E. Wilson, S.D. Klyce, and Z.M. Husseini, “Standardized Color-
Coded Maps for Corneal Topography,” Ophthalmology, vol. 100,
no. 11, Nov. 1993, pp. 1723–1727.

6. J.J. Antalis, R.G. Lembach, and L.G. Carney, “A Comparison of
the TMS-1 and the Corneal Analysis System for the Evaluation of
Abnormal Corneas,” Contact Lens Assoc. Opthalmologists J., vol.
19, no. 1, Jan. 1993, pp. 58–63.

7. M.W. Belin and C.D. Ratliff, “Evaluation Data Acquisition and
Smoothing Functions of Currently Available Videokeratoscopes,”
J. Cataract and Refractive Surgery, vol. 22, no. 4, May 1996, pp.
421–426.

8. H.J.W. Spoelder et al., “A Study of the Robustness of Pseudo Ran-
dom Binary Array Based Surface Characterization,” IEEE Trans.
Instrumentation and Measurement, vol. 47, no. 4, Aug. 1998, pp.
833–838.

9. G.H. Golub and J.M. Ortega, Scientific Computing: An Introduc-
tion with Parallel Computing, Academic Press, Boston, pp.
259–264.

10. H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum, “Orca: A Lan-
guage for Parallel Programming of Distributed Systems,” IEEE
Trans. Software Eng., vol. 18, no. 3, Mar. 1992, pp. 190–205.

Frans M. Vos is a postdoctoral research fellow with the
Pattern Recognition Group at Delft University of Tech-
nology. He is also a staff member in the Department
of Radiology at the Academic Medical Center, Amster-
dam. His research is chiefly in medical image process-
ing and visualization. He received his master’s degree
in medical informatics and computer science at the
University of Amsterdam and his PhD at the Vrije Uni-
versity, Amsterdam. Contact him at Pattern Recogni-
tion Group, Faculty of Applied Physics, Delft Univ. of
Technology, Lorenzweg 1, 2628 CJ Delft, Netherlands;
frans@ph.tn.tudelft.nl.

Hans J.W. Spoelder is an associate professor in the
Physics Applied Computer Science Group, Division of
Physics and Astronomy, Vrije Universiteit, Amsterdam.

He has also worked as a visiting scientist at IBM’s T.J.
Watson research Center, Hawthorne, N.Y. His research
interests include modeling, virtual environments, vir-
tual instrumentation, and man–machine interaction.
He has a degree in experimental physics and a PhD in
biophysics from the Free University of Amsterdam,
Netherlands. He is a senior member of the IEEE. Con-
tact him at Division of Physics and Astronomy, Faculty
of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081
HV Amsterdam, Netherlands.

Desmond M. Germans is a PhD student in the Physics
Applied Computer Science Group at the Vrije Univer-
sity of Amsterdam, where he also earned an MSc in
physics. His research interests include high-perfor-
mance graphics and interactive applications in virtual
reality. Contact him at Division of Physics and Astron-
omy, Faculty of Sciences, Vrije Universiteit, De Boele-
laan 1081, 1081 HV Amsterdam, Netherlands.

Rutger Hofman is a research programmer in Henri
Bal’s Computer Systems Group. He holds a degree in
computer science from the University of Amsterdam.
His work focuses on parallel performance, especially in

network layers and parallel applications. Contact him
at Division of Mathematics and Computer Science,
Faculty of Sciences, Vrije Universiteit, De Boelelaan
1081A, 1081 HV Amsterdam, Netherlands.

Henri Bal is a professor in both the Department of
Computer Systems and the Department of Physics-
Applied Computer Science at the Vrije University. His
research concerns parallel programming environments
and their applications and cluster and grid computing.
He designed the Orca language and leads the Manta,
Albatross, and other projects. He is also program chair-
man of the 2002 IEEE International Symposium on
Cluster Computing and the Grid (ccGrid’02). Bal holds
an MSc in mathematics from the Delft University of
Technology and a PhD in computer science from the
Vrije Universiteit, Amsterdam. Contact him at Division
of Mathematics and Computer Science, Faculty of Sci-
ences, Vrije Universiteit, De Boelelaan 1081A, 1081 HV
Amsterdam, Netherlands.

For more information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

PURPOSE The IEEE Computer Society is the world’s

largest association of computing professionals, and is the

leading provider of technical information in the field.

MEMBERSHIP Members receive the monthly

magazine COMPUTER, discounts, and opportunities

to serve (all activities are led by volunteer

members). Membership is open to all IEEE mem-

bers, affiliate society members, and others

interested in the computer field.

B O A R D O F G O V E R N O R S
Term Expiring 2002: Mark Grant, Gene F. Hoff-
nagle, Karl Reed, Kathleen M. Swigger, Ronald Wax-
man, Michael R. Williams, Akihiko Yamada

Term Expiring 2003: Fiorenza C. Albert-
Howard, Manfred Broy, Alan Clements, Richard A.
Kemmerer, Susan A. Mengel, James W. Moore,
Christina M. Schober

Term Expiring 2004: Jean M. Bacon, Ricardo
Baeza-Yates, Deborah M. Cooper, George V. Cy-
benko, Wolfgang K. Giloi, Haruhisha Ichikawa,
Thomas W. Williams
Next Board Meeting: 10 May 02, Portland, OR

I E E E O F F I C E R S
President: RAYMOND D. FINDLAY

President-Elect: MICHAEL S. ADLER

Past President: JOEL B. SYNDER

Executive Director: DANIEL J. SENESE

Secretary: HUGO M. FERNANDEZ VERSTAGEN

Treasurer: DALE C. CASTON

VP, Educational Activities: LYLE D. FEISEL

VP, Publications Activities: JAMES M. TIEN

VP, Regional Activities: W. CLEON ANDERSON

VP, Standards Association: BEN C. JOHNSON

VP, Technical Activities: MICHAEL R. LIGHTNER

President, IEEE-USA: LeEARL A. BRYANT

EXECUTIVE COMMITTEE
President: WILLIS K. KING*
University of Houston
Dept. of Comp. Science
501 PGH
Houston, TX 77204-3010
Phone: +1 713 743 3349 Fax: +1 713 743 3335
w.king@computer.org

President-Elect: STEPHEN L. DIAMOND*

Past President: BENJAMIN W. WAH*

VP, Educational Activities: CARL K. CHANG *

VP, Conferences and Tutorials: GERALD L. ENGEL*

VP, Chapters Activities: JAMES H. CROSS†

VP, Publications: RANGACHAR KASTURI†

VP, Standards Activities: LOWELL G. JOHNSON

(2ND VP)*

VP, Technical Activities: DEBORAH K.

SCHERRER(1ST VP)*

Secretary: DEBORAH M. COOPER*

Treasurer: WOLFGANG K. GILOI*

2001–2002 IEEE Division VIII Director:
THOMAS W. WILLIAMS

2002–2003 IEEE Division V Director:
GUYLAINE M. POLLOCK†

Executive Director: DAVID W. HENNAGE†

*voting member of the Board of Governors

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
http://computer.org, offers information and samples
from the society’s publications and conferences, as well
as a broad range of information about technical com-
mittees, standards, student activities, and more.

COMPUTER SOCIETY OFFICES
Headquarters Office

1730 Massachusetts Ave. NW
Washington, DC 20036-1992
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
E-mail: hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
Phone:+1 714 8218380
E-mail: help@computer.org
Membership and Publication Orders:
Phone: +1 800 272 6657 Fax: +1 714 821 4641
E-mail: help@computer.org

European Office
13, Ave. de L’Aquilon
B-1200 Brussels, Belgium
Phone: +32 2 770 21 98 • Fax: +32 2 770 85 05
E-mail: euro.ofc@computer.org

Asia/Pacific Office
Watanabe Building
1-4-2 Minami-Aoyama,Minato-ku,
Tokyo107-0062, Japan
Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553
E-mail: tokyo.ofc@computer.org

E X E C U T I V E S T A F F
Executive Director: DAVID W. HENNAGE
Publisher: ANGELA BURGESS
Assistant Publisher: DICK PRICE
Director, Volunteer Services: ANNE MARIE KELLY
Chief Financial Officer: VIOLET S. DOAN
Director, Information Technology & Services:
ROBERT CARE
Manager, Research & Planning: JOHN C. KEATON

21-JAN-2002

