The Optimal Choice of Commuting Speed: Consequences for Commuting Time, Distance and Costs

Jos Van Ommeren¹
Joyce Dargay²

¹ Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam, and Tinbergen Institute,
² ESRC Transport Studies Unit, University College London, UK.
Tinbergen Institute
The Tinbergen Institute is the institute for economic research of the Erasmus Universiteit Rotterdam, Universiteit van Amsterdam, and Vrije Universiteit Amsterdam.

Tinbergen Institute Amsterdam
Roetersstraat 31
1018 WB Amsterdam
The Netherlands
Tel.: +31(0)20 551 3500
Fax: +31(0)20 551 3555

Tinbergen Institute Rotterdam
Burg. Oudlaan 50
3062 PA Rotterdam
The Netherlands
Tel.: +31(0)10 408 8900
Fax: +31(0)10 408 9031

Please send questions and/or remarks of non-scientific nature to driessen@tinbergen.nl.
Most TI discussion papers can be downloaded at http://www.tinbergen.nl.
The optimal choice of commuting speed: consequences for commuting time, distance and costs

Jos Van Ommeren
Free University, FEWEB
De Boelelaan
1081 HV Amsterdam
Email: jommeren@feweb.vu.nl

Joyce Dargay
ESRC Transport Studies Unit
University College London
Gower Street
London WC1E 6BT
Email: j.dargay@ucl.ac.uk

3 August 2004
The optimal choice of commuting speed: consequences for commuting time, distance and costs

Abstract. In this paper, we derive a structural model for commuting speed. We presume that commuting speed is chosen to minimise commuting costs, which encompass both monetary and time costs. At faster speed levels, the monetary costs increase, but the time costs fall. Using data from Great Britain, we demonstrate that the income elasticity of commuting speed is 0.126. The ratio of variable monetary costs to travel time costs is 0.14.

Keywords: commuting, speed, travel demand modelling.

1. Introduction

Since the pioneering work of McFadden (1974), a large number of studies on the choice of travel mode have been carried out. It may be argued that speed and monetary costs are the most important structural components of the travel mode choice, although other components (convenience etc) certainly have an influence. In the current paper, the focus is on commuting speed and its relation to the monetary costs. One of the main findings of the travel mode literature is that income is among the most important variables determining mode choice (Train, 1980; Kitamura, 1989; Jara Diaz and Videla, 1989; Dargay and Hanly, 2004), suggesting that low-income travellers choose a lower speed level to economise on monetary costs.1 This finding supports the literature on the trends in commuting distance, time and speeds travelled, which essentially demonstrates that average commuting time is (quite) constant over long periods, but commuting distance and speed have increased substantially over the last couple of decades during which we

1 The effect of income on mode choice is thought to be primarily indirect, through its effect on car ownership: higher income increases the probability of owning one or more cars and car availability is an important determinant of mode choice. In essence, high-income individuals choose faster, but more expensive travel modes than low-income individuals. Further, there is sufficient evidence that given the
have observed strong GDP growths. Clearly, the optimally chosen speed level is related to the concept of the value of time (VOT), which essentially measures the value of each unit of time that can be saved by travelling faster. So, given information on how the monetary costs of commuting depend on the speed level (e.g. Rouwendal, 1996), the value of time can be used to predict the chosen speed level.

In the current paper, we identify the relationship between monetary costs and speed level given reduced form estimates of the income elasticity of the speed level. The theoretical analysis demonstrates that given an income elasticity of 0.5, the monetary costs are a linear function of speed, but for lower elasticities, the monetary costs are a convex function of speed. When the income elasticity is (close to) zero, then the commuter is essentially restricted in the choice of the optimal speed level. We also demonstrate that the ratio of the variable monetary costs to time travel costs, which is optimally chosen by the commuter by choosing the optimal speed, depends on how the monetary costs vary with speed. It appears that this ratio depends negatively on the marginal monetary costs of speed. Further, it appears that when the monetary costs are a linear function of speed, the variable monetary costs are exactly equal to the travel time costs when the speed is optimally chosen. In contrast, when the monetary costs are a convex (concave) function of speed, the variable monetary costs are less (more) than the time travel costs. We demonstrate on the basis of British data that the income elasticity of speed is 0.126, implying that the monetary costs are a convex function of speed, and that the variable monetary costs are less than the time travel costs. We find that the ratio of monetary costs to time travel costs is about 0.14 (with a standard error of 0.06).

We emphasise that our analysis focuses on commuters and not on travellers in general for a number of reasons. First, value of time estimates vary widely among different travel purposes (Small, 1992). Commuters are a relatively homogeneous group of travellers for which assumptions on the value of time make more sense. Second, in the case of commuting, the commuting distance can be instrumented avoiding problems with the endogeneity of distance to speed, whereas this may be more difficult for other travel purposes.

choice of travel mode, those with high incomes travel faster (Rienstra and Rietveld, 1996; Shinar et al. 2001; Fosgerau, 2004).
The outline of the paper is as follows. In the next section, we derive a structural model for speed and show how one can estimate and identify the parameters of interest based on reduced form estimates. In Section 3, the empirical results are presented and in Section 4 the interpretation of the estimates in terms of the structural model are discussed. Section 5 concludes.

2. The optimal speed model

In the current paper, we focus on employed individuals who earn an hourly wage \(w \) and who aim to minimise the commuting costs, conditional on the commuting distance. Workers' commuting costs \(t \) are generally thought to consist of two main components - monetary commuting costs \(t_m \) and travel time costs \(t_c \). Workers can influence both commuting costs components by choosing the desired travel speed \(s \). So, the commuting costs are determined by the travel speed \(s \) conditional on the commuting distance \(d \). The choice of the travel speed determines the monetary and travel time costs. Commuting time is denoted as \(h_c \), which measures the hours of commuting. Note that the commuting costs include a fixed component, which does not depend on the chosen speed level.\(^2\) Because the size of this component does not influence the chosen level of the speed, we will only focus on variable commuting costs.

We assume that the monetary costs \(t_m \) depend positively on the travel speed, spatial characteristics\(^3\), \(X \) and distance \(d \).\(^4\) The hourly time travel costs are assumed to be proportional to the hourly wage \(w \), so \(t_c = \psi wh_c \), where \(\psi > 0 \) and \(\psi w \) is the value of

\(^2\) The fixed component can be defined as the minimum monetary costs to travel a certain distance using any travel mode within the choice set. For longer distances the choice set does not include walking and bicycling. Clearly, the fixed component is increasing in distance.

\(^3\) We assume that monetary costs do not depend on the socio-demographic characteristics of the individual or on income. This, however, may not always be valid. One example of the former could be that maintenance costs may be lower for men than for women as they men are typically more likely to undertake car repairs themselves. An example of the dependency on income could be that higher income individuals have newer and more expensive cars for their reliability, comfort and status, rather than (or in addition to) their speed.

\(^4\) It may be thought that given the choice of mode, the monetary costs are given. This is certainly not the case for car drivers. In the case of car drivers, the monetary costs include fuel costs, accident costs and fines which all depend on the speed level (Rienstra and Rietveld, 1996; Verhoef and Rouwendal, 2001; Gander, 1985; Rotemberg, 1985). Further, more expensive cars offer the opportunity to drive faster, see Rienstra and Rietveld (1996). Note further that we may ignore the situation where the commuting costs
time. It may be the case that ψ is a function of individual characteristics Z (but not of spatial characteristics), so $\psi = \psi(Z)$. Given these assumptions, total variable commuting costs t can be written as:

$$t = \psi(Z)wh_c + \tau(X, s, d)d,$$
(1)

where $\tau(X, s, d)$ denotes the monetary costs divided by the distance, so $\tau(X, s, d) = t_m/d$. It is assumed that $\tau(X, s, d)$ is a continuous function of speed s.

Given the relationship between commuting time, speed and distance (by definition, commuting time h_c equals d/s), total commuting costs can be written as:

$$t = \left[\frac{\psi(Z)w}{s} + \tau(X, s, d)\right]d,$$
(2)

where the first term between brackets denotes the travel time costs per distance unit and the second term denotes the monetary costs per distance unit. Figure 1 illustrates commuting costs as a function of the chosen speed. *Conditional on the commuting distance and the wage*, the employee chooses the optimal speed s^* by minimising total commuting costs. The first-order condition ($\partial t/\partial s^* = 0$) implies then that:

$$\psi(Z)\frac{w}{s} = \tau'(X, s^*, d)s^*,$$
(3)

where $\tau'(X, s^*, d)$ denotes $\partial \tau(X, s, d)/\partial s$ for $s = s^*$. Hence, in the optimum, the time costs t_c are equal to $\tau'(X, s^*, d)s^*d$. Hence, $t_m/t_c = \tau(X, s^*, d)/\tau'(X, s^*, d)s^*$.

depend negatively on speed, because this would imply that the maximum possible speed would always be chosen.

5 The standard way to study modal choice is to apply discrete choice methods. As one proceeds from one mode to the other (for example from bicycle to bus), a discrete jump takes place in terms of both speed and monetary costs. In the present context we model these costs as a continuous function of speed. The assumption that $\tau(X, s, d)$ is continuous may be less restrictive than often thought, because many commuters combine several modes on a day (e.g. walking and underground) or use a combination of modes on several days during a week (Van Exel and Rietveld, 2004). Further, it may be argued that car drivers influence the speed level by changing departure time to and from work, so the monetary costs include the schedule delay.
We will assume now that $\tau(X,s,d) = \kappa(X,d)s^{\alpha_s}$, hence $\tau(X,s,d)$ is parameterised as a power function of s ($\alpha_s > 0; \kappa(X,d) > 0$), so $\tau(X,s,d)$ is assumed to be increasing in the speed level and we allow for interactive effects between the speed level s, X and d. The parameter α_s may be interpreted as the speed elasticity of the monetary costs (per distance). This interactive effect may exist, for example, because at long distances, the marginal monetary costs with respect to speed may be less than at short distances. Subsequently, it appears that:

$$
\frac{t_m}{t_c} = \frac{1}{\alpha_s}, \text{ if } s = s^*.
$$

(4)

Hence given the optimal speed level, the ratio of the (variable) monetary costs to the time costs is equal to the inverse of the speed elasticity of the monetary costs. Note that this ratio does not depend on any other variable such as the speed level or the wage, because the speed level and therefore this ratio are optimally chosen.

In the special case that the monetary costs are a linear function of the speed level, then $\alpha_s = 1$. This implies that in this special case $t_m = t_c$, so the optimal speed is chosen such that the time travel costs are exactly equal to the variable monetary travel costs, see Figure 1. Now suppose that the monetary costs are a convex (concave) function of speed, conditional on distance, so $\alpha_s > 1$ ($\alpha_s < 1$). In this case, the variable monetary costs exceed (less than) the time costs. In the current paper, we will estimate α_s, which enables us to estimate the ratio of monetary costs to time costs.

Given (3), the optimally chosen speed level can be written as:

$$
\frac{\psi(Z,w)}{\tau^*(X,s^*,d)}.
$$

(5)

It follows from (5) that:

\text{costs.}

\footnote{The assumption that α_s exceeds zero guarantees that the second-order condition of the worker's minimisation problem is fulfilled in the optimum, which guarantees a finite speed solution.}
\[\tau'(X, s^*, d) = \psi(Z).w/s^*(Z, X, d, w)^2. \] (6)

More conveniently, the (natural) logarithm of the optimal speed \[\log s^*(Z, X, d, w) \] can be written as:

\[\log s^*(Z, X, d, w) = \frac{1}{2} \log \psi(Z) + \frac{1}{2} \log w - \frac{1}{2} \log \tau'(X, s^*, d). \] (7)

Recall that \[\tau(X, s, d) = \kappa(X, d)s^{\alpha_d}. \] To derive how the optimally chosen speed depends on \(Z, X, d \) and \(w \), we proceed by presuming a certain functional form for \(\kappa(X, d) \). We emphasise here that \(\tau(X, s, d) \) is defined for arbitrary levels of \(s \). We will suppose that:

\[\tau(X, s, d) = s^{\alpha_d} \exp^{\alpha_0 + \alpha_s X + \alpha_d \log d} \] (8)

Hence, \[\log \tau(X, s, d) = \alpha_d \log s + \alpha_0 + \alpha_s X + \alpha_d \log d, \] so the parameter \(\alpha_d \) is the distance elasticity of the monetary costs per distance, so \(\alpha_d + 1 \) is the distance elasticity of the monetary costs.\(^7\) Equation (8) implies that:

\[\tau'(X, s, d) = s^{-1} \exp^{\alpha_0 + \alpha_s X + \alpha_d \log d + \log \alpha_s}. \] (9)

Let us further assume that:

\[\psi(Z) = \alpha_{z0} \exp^{\alpha_s Z}, \] (9B)

where \(\alpha_{z0} \) denotes a constant. To simplify the notation, we will write \(s^*(Z, X, d, w) \) as \(s^* \).

\(^7\) It may be thought that \(\alpha_d \) must exceed \(-1\), because the total monetary costs must be an increasing function of distance \(d \). However, \(\alpha_d \) may be less than \(-1\), because total monetary costs consist of a fixed component, which does not depend on speed, and a variable component. In case that the fixed monetary costs increase as a function of distance, then the variable monetary costs may decrease in distance, so \(\alpha_d \) may be less than \(-1\).
Substituting (9) and (9B) into (7), the \textit{optimally} chosen speed level s^* can then be written as:

$$
\log s^* = \frac{\left[\log \alpha_{x0} + \alpha_z Z - \alpha_0 + \log w - \alpha_s X - \alpha_d \log d - \log \alpha_s \right]}{1 + \alpha_s}.
$$

(10)

One of the main implications of (10) is that the optimal speed depends positively on the wage (since $\alpha_s > 0$). In order to estimate the structural parameters of (10), we also introduce unobserved heterogeneity. It is natural to assume that individuals deviate from each other in unobserved ways not taken into account by equation (10). We presume that α_0 in (10) is randomly distributed with mean $\overline{\alpha}_0$, so $\alpha_0 = \overline{\alpha}_0 + \varepsilon$ where ε is i.i.d. random error. This implies that:

$$
\log s^* = \beta_0 + \beta_x X + \beta_z Z + \beta_w \log w + \beta_d \log d + u,
$$

(11)

where

$$
\begin{align*}
\beta_0 &= \frac{\log \alpha_{x0} - \overline{\alpha}_0 - \log \alpha_s}{1 + \alpha_s}, \\
\beta_z &= \alpha_z / (1 + \alpha_s), \\
\beta_x &= -\alpha_x / (1 + \alpha_s), \\
\beta_w &= 1 / (1 + \alpha_s), \\
\beta_d &= -\alpha_d / (1 + \alpha_s), \\
u &= -\varepsilon / (1 + \alpha_s).
\end{align*}
$$

(12)

(12A)

(12B)

(12C)

(12D)

(12E)

It can be easily seen that β_w is the income elasticity of speed and because $\alpha_s > 0$, it follows that $\beta_w < 1$. In the case where the monetary costs are a linear function of speed,

8 Equations (7) and (9) imply that:

$$
\log s^* = \frac{1}{2} \log \psi(Z) - \frac{1}{2} \alpha_0 + \frac{1}{2} \log w - \frac{1}{2} \alpha_s X - \frac{1}{2} \alpha_d \log d - \frac{1}{2} (\alpha_s - 1) \log s^* - \frac{1}{2} \log \alpha_s.
$$

Hence, (10) follows.

9 An alternative specification is that ψ is random.
so $\alpha_s = 1$, then $\beta_w = 0$. In the case where the monetary costs are a convex function ($\alpha_s > 1$), then $0 < \beta_w < 0.5$. Only when α_s goes to infinity, so the commuters are fully constrained in their choice of speed, then $\beta_w = 0$. In the case of a concave function, $\beta_w > 0.5$. The reduced form parameters can be estimated by means of a regression of the logarithm of the speed level s on the logarithm of the wage w, the characteristics X and Z and the logarithm of commuting distance d. Given the reduced form estimates of β_z, β_x, β_w and β_d, the ‘structural’ parameters α_z, α_d, α_s and α_x are identified when Z and X do not include the same variables. Clearly:

\[
\begin{align*}
\alpha_z &= \beta_z / \beta_w, \quad \text{(12F)} \\
\alpha_d &= -\beta_d / \beta_w, \quad \text{(12G)} \\
\alpha_x &= -\beta_x / \beta_w, \quad \text{(12H)} \\
\alpha_s &= -1 + 1 / \beta_w. \quad \text{(12I)}
\end{align*}
\]

The above results make sense. For example, α_z can be interpreted as the effect of Z on (the logarithm of) the value of time (see (9B)), which is proportional to the wage. Hence, the speed level will be optimally chosen such that α_z is equal to the ratio of the marginal effect of Z on speed to the marginal effect of (the logarithm of) the wage on speed (see (12F)).

10 One may argue that congestion may fully constrain car drivers when the whole trip is congested and there are no alternatives. For short distances, it is more likely that the whole trip is congested (e.g. in the centre of London), but in this case alternative modes are often available (e.g. walking, underground etc).

11 As noted earlier, there may be cases where $\tau(X,s,d)$ should include income or the characteristics of the individual. However, we assume these to be of minor importance and thus omit them. Another case is when monetary costs include schedule delay costs so that it may be argued that the wage enters $\tau(X,s,d)$ because wage may affect schedule delay costs. There is some evidence that for this reason $\tau(X,s,d)$ is a negative function of wage w (Emmerink and Van Beek, 1997). We do not explicitly allow for that, so our estimates of α_s may be biased upwards.

12 As noted earlier, there may be cases where $\tau(X,s,d)$ should include income or the characteristics of the individual. However, we assume these to be of minor importance and thus omit them. Another case is when monetary costs include schedule delay costs so that it may be argued that the wage enters $\tau(X,s,d)$ because wage may affect schedule delay costs. There is some evidence that for this reason $\tau(X,s,d)$ is a negative function of wage w (Emmerink and Van Beek, 1997). We do not explicitly allow for that, so our estimates of α_s may be biased upwards.

13 For environmental characteristics (such as the urban density), it is implausible that they affect directly the monetary value of time, so they are not included in Z. For some individual characteristics, one may argue that these should be included in both Z and X, because they may influence the value of time but also the monetary variable costs, so for these variables the structural parameters are not identified. Suppose that the variable XZ is in X and Z. In this case, $\beta_{xz} = (\alpha_x - \alpha_z)/(1 + \alpha_x)$.

14 Given an estimate of β_0 and an assumption on the value of α_{x0} (usually the value of time is thought to be
Given the reduced form parameters, one can easily estimate the effects of Z, X, d and w on the monetary costs, presuming that individuals have chosen the optimal commuting speed. We substitute $s^*(Z,X,d,w)$ into the marginal monetary commuting costs per distance $\tau'(X,s^*,d)$ (see (6) and (11)), so:

$$\tau'(Z,X,d,w) = \psi(Z).w.\exp^{-2[\beta_0 + \beta_x X + \beta_z Z + \beta_w \log w + \beta_d \log d + u]} ,$$

(13)

and, thus, the marginal monetary costs given the optimal speed level can be written as:

$$t'_m = \psi(Z).w.\exp^{-2[\beta_0 + \beta_x X + \beta_z Z + \beta_w \log w + [\beta_d - {\frac{1}{2}}] \log d + u]} ,$$

(14)

or maybe more conveniently taking logarithms and noting that $\psi(Z) = \alpha_{Z0} \exp(\beta_z / \beta_w)Z$:

$$\log t'_m = \log \alpha_{Z0} + \beta_z (-2 + 1/ \beta_w)Z + \log w$$

$$- 2[\beta_0 + \beta_x X + \beta_w \log w + [\beta_d - {\frac{1}{2}}] \log d + u]$$

(15)

so:

$$\partial \log t'_m / \partial \log w = 1 - 2 \beta_w ,$$

(16A)

$$\partial \log t'_m / \partial X = -2 \beta_x ,$$

(16B)

$$\partial \log t'_m / \partial \log d = 1 - 2 \beta_d ,$$

(16C)

$$\partial \log t'_m / \partial Z = (-2 + 1/ \beta_w) \beta_z .$$

(16D)

Hence, we are able to calculate how the optimally chosen marginal monetary costs around 0.5, so α_{Z0} is around 0.5, see Small, 1992), $\overline{\alpha_0}$ is also identified:

$$\overline{\alpha_0} = -\beta_0/\beta_w + \log\alpha_{Z0} - \log(1 + 1/\beta_w).$$
\(t'_m \) depend on \(w, Z, X \) and \(d \). Note further that \(\log t_m = \log t'_m + \log s^* - \log(\alpha_s) \), because \(t_m = d.\tau(X,d,w) = d.s^*.\tau'(X,d,w)/\alpha_s \), hence:

\[
\log t_m = (1 + 1/\beta_w)\beta_zZ + \log w - [\beta_0 + \beta_X X + \beta_w \log w \\
+ [\beta_d - 1]\log d + u] - \log(1 + 1/\beta_w)
\]

(17)

so:

\[
\frac{\partial \log t_m}{\partial \log w} = 1 - \beta_w \quad (18A)
\]

\[
\frac{\partial \log t_m}{\partial X} = -\beta_x \quad (18B)
\]

\[
\frac{\partial \log t_m}{\partial \log d} = 1 - \beta_d \quad (18C)
\]

\[
\frac{\partial \log t_m}{\partial Z} = (1 + 1/\beta_w)\beta_z \quad (18D)
\]

Hence, given the reduced form estimates, we are able to identify the effects of \(X, Z, d \) and \(w \) on (the logarithm of) the monetary costs. For example, the reduced form estimates \(\beta_x \) can be interpreted as minus the marginal effect of \(X \) on \(\log t_m \) (see (18B)). The marginal effect of \(Z \) has the same sign as \(\beta_z \), because \(-1 + 1/\beta_w = \alpha_s > 0\). Recall that we have shown that if the commuter chooses the optimal speed, then \(t_c = \alpha_st_m \) (see (4)), so it follows that \(t = (\alpha_s + 1)t_m \) and thus \(\log t = \log(1 + \alpha_s) + \log t_m \). Consequently, the (partial) effect of any exogenous variable on the logarithm of the commuting costs \(\log t \) is equal to the (partial) effect on the logarithm of the monetary commuting costs \(\log t_m \). In Table 1, we have summarised the effects.

It appears from Table 1 that the reduced form estimates \((\beta_z, \beta_x, \beta_w \text{ and } \beta_d) \) can be readily interpreted. For example, the effect of a variable \(X_i \) on \(\log s \) can be interpreted as (the negative of) the effect of this variable \(X_i \) on the logarithm of the commuting costs, \(\log t \). The implication is, of course, that if in an area the average speed is, let’s say, 10% lower, e.g. due to speed restrictions which require commuters to drive 45 mph instead of 50 mph, then the implied additional commuting costs are equal to 10% when the speed is

\(^{15}\) Recall that \(\partial v/\partial s^* = 0 \), so \(t' = 0 \) and \(t = t_m + t_c \). So, \(t'_m = -t'_c \).

\(^{16}\) Because \(s^* \) is optimally chosen, \(\tau(X,d,w) = s^*\tau'(X,d,w)/\alpha_s \).
optimally chosen. However if commuters in the area with the speed restrictions of 45 mph drive at 50 mph, then the implied additional monetary costs are equal to $\alpha_x = -\beta_x(1+\alpha_x)$ (see the last column of Table 1). Speed restrictions imply a convex monetary costs function (which may be presumed to be a continuous function of speed, because the probability of being fined is a continuous function of speed), so $\alpha_x > 1$, so α_x is at least twice β_x. For example, when $\alpha_x = 5$, the implied monetary costs of driving 55 mph would be 50% higher than when driving 50 mph.

In the third column, the effect of characteristics on the marginal commuting costs with respect to speed can be found. The interesting hypotheses here are whether $1-2\beta_w = 0$, so $\beta_w = 0.5$, and whether $1-2\beta_d = 0$, so $\beta_d = 0.5$. In the case that $\beta_w = 0.5$, the implication is that the wage has no effect on the marginal monetary costs. Similarly, if $\beta_d = 0.5$, then the distance has no effect on the marginal monetary costs.

3. Empirical results

3.1 The data

The empirical analysis involves estimating equation (11). This requires information on commuting speed, commuting time, the wage rate and other variables that influence choice of travel speed, preferably on the individual level. We use data from National Travel Surveys (NTS) for Great Britain. The NTS is based on a 7-day travel diary for a sample of private households and includes information on distance, time, purpose and mode for all trips made by each household member. It also includes data on a large number of socio-economic and demographic characteristics relating to the individuals and households.

Our analysis employs data for the six years 1989-1991 and 1999-2001. Using data for three consecutive years insures that the sample is representative of the British population and the two 3-year periods increases the variation in the variables, as well as providing the possibility of examining changes in behaviour over time. The analysis is based on individuals who report work trips by all modes on a given day. Thus all stages of the commuting journey, both to and from work, are included in the measures of
commuting time, distance and speed. In our sample, the average commuting time per working day is 43 minutes (s.d. = 34), the average commuting distance is 15 miles (s.d. = 19) and the average commuting speed is 18 miles per hour (s.d. = 12).18

A most important explanatory variable in our model is the wage rate. Information on the hourly wage is not collected in the NTS, so the annual income of the individual is used instead.19 Other explanatory variables included in the model relate to characteristics of the individual, the household to which they belong and the area in which they live. Characteristics of the individual are gender, age, whether they are full- or part-time employed and whether they are employed or self-employed. The characteristics of the household include the number of adults in the household and whether or not there are children in the household. The location variables are the population density and the population of municipality where the individual resides. Apart from income and distance, all explanatory variables are binary variables equal to 1 if the condition holds and zero otherwise. The estimation thus requires one variable in each group to be omitted and the coefficients of the remaining variables are interpreted in relation to the reference group. A dummy variable equal to one for the 1999-2001 data and zero for the 1989-1991 data is also included to allow for a difference in intercept over the 10-year period.20

3.2 The estimation procedure

In the theoretical analysis, it is assumed that the commuting distance is exogenously given. This assumption is unlikely to hold in the data we analyse. For example, it may be the case that some individuals may have a preference for a faster (or slower) travel mode (e.g. the car) for reasons unrelated to speed (e.g. convenience) and are therefore more likely to commute faster (or slower) than other individuals. Given higher speed levels,
these individuals are more likely to accept longer distances a priori. A similar problem occurs when some individuals are more restricted in maximum speed levels than others. Individuals face different degrees of physical and legal constraints which affect the maximum costs of speed (e.g. congestion, maximum speed restrictions).21 If individuals are constrained at different levels, then it means that those who are able to travel at higher speeds without exceeding the maximum speed restriction may accept jobs at longer distances ceteris paribus. Further, it is difficult in the empirical analysis to control fully for the variation in the spatial environment (e.g. supply of public transport, congestion, motorway accessibility etc) which may cause the commuting distance to become endogenous. If commuting distance is endogenous, it will be correlated with the error term so that the OLS estimates of (11) will not be consistent. Consistent estimates can be obtained by using an instrumental variables (IV) estimation procedure. As an instrument for commuting distance, we use the skill level of the job. The skill level should \textit{not} influence the optimal speed conditional on income, but will influence the density of acceptable jobs and therefore the commuting distance. It is generally true that jobs involving higher skill levels are more specialised and therefore less common, implying longer commuting distances (Rouwendal and Rietveld, 1994).

3.3 The reduced form estimates of speed

Both OLS and IV estimates are presented in Table 2, along with goodness-of-fit and test statistics.22 The Hausman Test for the exogeneity of the distance variable, shown at the bottom of the table, is 2.398, so that exogeneity cannot be rejected at the 0.10 probability level. This implies that OLS provides consistent estimates (although the power of the test may not be high). The estimated parameters are very similar for both models, and in most cases are not statistically different from each other. In general, the reduced form estimated coefficients are in accordance with the literature on transport mode choice (Madan and Groenhout, 1987; Jara Diaz and Videla, 1989; Asensio, 2002).23 The income

21 Note that maximum speed restrictions are, from an economic point of view, not an absolute constraint, since people can, and do, exceed maximum speed levels at the risk of paying a fine (Gander, 1985). The point is however that some individuals face different maximum speed restrictions.

22 A number of other models were estimated, which confirm the robustness of the results.

23 The reduced form estimates are broadly consistent with those of Fosgerau (2004), who analyses the speed of car drivers who also travel for different purposes other than commuting, arguing a positive
elasticity of speed is estimated as 0.088 (OLS) and 0.126 (IV) and the elasticity of speed with respect to distance as 0.492 (OLS) and 0.403 (IV). Statistically, there is little difference between the estimates.

The characteristics of residential location are shown to be highly significant with both estimation procedures. Commuting speed declines as population density increases, and also declines as the population of the municipality increases. Both of these reflect the higher congestion in built up areas and the availability and more prevalent use of public transport. Regarding the other variables, we find that commuting speed is lower for women and for the over 65s. The part-time employed and the self-employed appear to travel at higher speeds than the full-time employed according to the OLS estimates, but the IV estimates indicate that this effect is spurious. Individuals who are the sole adult in the household travel slower than those in households with 2 or more adults. Those with children appear to travel faster, but not significantly so. The results show further that commuting speed has not increased over the decade, ceteris paribus.

4. The structural parameters and the effect on the commuting costs

Given the reduced form estimates, we are able to calculate the structural parameters α_s, α_d, α_z and α_x (see Table 3). We will discuss the IV estimates in more detail, but note that the OLS estimates tend to give somewhat higher values, because the point estimate of β_w is somewhat smaller. We have seen that $\beta_w = 0.126$ (s.e. = 0.026), it appears therefore that the speed elasticity of monetary costs $\alpha_s = 6.94$ (s.e. = 1.40, see equation (12H)), so $\alpha_s > 1$. The main consequence is that the monetary costs are a convex function of speed. Because α_s is quite large, the marginal cost of commuting is extremely high at higher speed levels. We believe this makes sense. At certain higher levels of speed, commuters are essentially constrained due to speed limits and the increased risk of an accident. The estimates also imply that at low speed levels, the marginal costs are close to zero. This also makes sense. For example, the additional monetary costs of switching from walking to the use of a bicycle (which increases the speed level by a factor four) are modest.

relationship between speed and income due to the presence of speed limit fines. In this study for Denmark, the income elasticity is smaller than we find (about 0.02 to 0.03) and the distance elasticity is about 0.20.
Recall that by choosing an optimal speed level, the ratio of variable monetary costs to time costs is equal to α_{s}^{-1}. It follows that the ratio of variable monetary costs to time costs is equal to 0.144 (s.e. = 0.061). Such a result is consistent with the mode choice literature where it is found that exogenous travel time changes in transport modes are seen as a more relevant factor than monetary costs (e.g. Madan and Groenhout, 1987; Asensio, 2002).

Recall that the parameter α_{d} is the distance elasticity of the monetary costs per distance. The results imply that α_{d} is negative and is equal to -3.14 (s.e. = 0.69), see equation (12F). Hence at longer distances, the marginal monetary costs are substantially lower, which is consistent with the observation that commuters at longer distances travel much faster (as we have argued before, the fixed monetary costs will probably increase with distance, so $\alpha_{d}+1$, the distance elasticity of the variable monetary costs may be negative). One may argue that it is more insightful to focus on the effect of distance on the (variable) commuting costs given the optimal speed level. Employing (18C), it appears that the distance elasticity of the commuting costs is about 0.6 (see Table 3). It appears however (see (16C)) that the distance elasticity of the marginal monetary commuting costs is 0.194 (s.e. = 0.118), which is statistically not different from zero at the 5% significance level (of course, the marginal total commuting costs are zero by assumption). Consequently, the effect of speed on the monetary costs does not depend on distance, when the speed is optimally chosen.

The parameter α_{x} measures the effect of background characteristics on (the logarithm of) the monetary commuting costs. For example, it follows (using (8) and (12H)) that in London the implied (marginal) monetary costs are much higher. Ceteris paribus (so given the same arbitrarily chosen speed level), the (marginal) monetary costs are about 13 times higher ($\exp(2.571) = 13$) than in small cities. One may again argue however that it is less insightful to focus on the effect of X given arbitrarily chosen speed levels, because the optimally chosen speed level is different in London than elsewhere. Equation (16B) shows that in London (compared to municipalities with a size between 3 and 100k inhabitants and given the lower optimally chosen speed level) the marginal monetary costs are ‘only’ about 2 times higher ($\exp(0.648) = 2.07$), whereas the monetary
costs are ‘only’ 1.51 times higher (exp(0.324) = 1.51, employing (18A)). Hence, we interpret the results as follows. Given the same speed level, the (marginal) monetary costs are much higher in London than elsewhere. Subsequently, the commuters choose lower speed levels in London than elsewhere to decrease the marginal monetary costs. Still, in the optimum, the marginal monetary costs are higher in London, since the marginal benefits are decreasing in speed, so the marginal benefits are higher in London. One of the consequences is that the implied variable monetary costs are about 50% higher in London given the chosen speed level.

The parameter α_z measures the effect of Z on (the logarithm of) the value of time $\psi(Z)$. It follows that the value of time of women is about 40% less (exp(-0.508) - 1 = -0.40) than for men, ceteris paribus, but other individual characteristics have no statistically significant effect. Note that because the speed elasticity of the monetary costs α_s is large (i.e., the monetary costs are a convex function of speed), a relatively small value for β_z has a large effect on α_z (for women, β_z is -0.064, see Table 2). This implies that relatively large differences in the value of time between individuals have little effect on the chosen speed level.

5. Conclusion

In this paper, we have estimated a structural model of optimal speed choice, which can be derived from a reduced form regression of speed on income and distance. The model has been applied to the UK for the year 1989 to 1991 and 1999 to 2001. Our estimates imply that the elasticity of speed with respect to income is 0.126 and that the total travel costs mainly consist of time costs. For the average commuter, the variable monetary costs are about 14% of the total variable costs. We find that the monetary costs of speed are a convex function of speed: at high levels of speed, monetary costs increase strongly (e.g. due to the increased risk of accidents, fines etc), so the marginal costs become essentially infinite. Our results imply that differences in the value of time between individuals have little effect on the chosen speed level. Finally, it appears that the (marginal) monetary costs of speed are a positive function of the population density and municipality size.

24 The standard error is calculated using the delta method, see Goldberger (1991).
ceteris paribus. For example, in London, the variable monetary costs of speed are about 13 times as large than in small cities, ceteris paribus. Nevertheless, given the optimally chosen speed level, which is much lower in London due to speed restrictions and congestion which increases the risk of accidents (Verhoef and Rouwendal, 2001), the variable marginal costs are ‘only’ 50% larger.

Acknowledgements

Support from the Economic and Social Research Council of the UK is gratefully acknowledged. We would like to thank Marcel Hoogzaad and Mark Hanly for valuable assistance.
References:

Dargay, J. and M. Hanly (2004), Land use and mobility, paper presented at the WCTR conference in Istanbul, July 2004

Emmerink, E. and P. Van Beek (1997), Empirical analysis of the work schedule flexibility: implications for road pricing and driver information systems, *Urban Studies*

Fosgerau, M. (2004), Speed and income, Danish Transport Research Institute, mimeo

Rienstra, S.A and P. Rietveld (1996), Speed behaviour of car drivers: a statistical analysis of acceptance of changes in speed policies in the Netherlands, *Transportation Research D*, 1, 2, 97-110

Verhoef, E.T. and J. Rouwendal (2001), A structural model of traffic congestion, Tinbergen Institute Discussion Paper 26, 3
FIGURE 1. Commuting costs as a function of speed (when the monetary costs are a linear function of speed).
Table 1. Comparative statics: marginal effects

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>logs</td>
<td>logt</td>
<td>logt_m</td>
<td>logt_m</td>
<td>_s</td>
</tr>
<tr>
<td>Z</td>
<td>β_z</td>
<td>$-1 + 1/\beta_w \beta_z$</td>
<td>$-2 + 1/\beta_w \beta_z$</td>
<td>-</td>
<td>α_z</td>
</tr>
<tr>
<td>X</td>
<td>β_x</td>
<td>$-\beta_x$</td>
<td>$-2\beta_x$</td>
<td>α_x</td>
<td>-</td>
</tr>
<tr>
<td>logw</td>
<td>β_w</td>
<td>$1 - \beta_w$</td>
<td>$1 - 2\beta_w$</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>logd</td>
<td>β_d</td>
<td>$1 - \beta_d$</td>
<td>$1 - 2\beta_d$</td>
<td>α_d</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: $\text{logt}_m' = \partial \text{logt}_m / \partial s$; log t and logt_m' are determined given the optimally chosen speed level. In the last two columns, the effect is reported on the monetary and time costs conditional on the speed level. When the X and Z variables are discrete dummy variables, then the effect of a variable with effect of let’s say γ is equal to $\exp \gamma - 1$, which is approximately equal to γ when γ is small.
Table 2. Parameter estimates and statistical tests. Dependent variable = Log Speed

<table>
<thead>
<tr>
<th></th>
<th>OLS Estimation</th>
<th>IV Estimation</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>S.E.</td>
<td>Prob</td>
<td>Coefficient</td>
<td>S.E.</td>
<td>Prob</td>
</tr>
<tr>
<td>Constant</td>
<td>0.396</td>
<td>0.030</td>
<td>0.000</td>
<td>0.702</td>
<td>0.204</td>
<td>0.001</td>
</tr>
<tr>
<td>(\beta_w)</td>
<td>0.088</td>
<td>0.008</td>
<td>0.000</td>
<td>0.126</td>
<td>0.026</td>
<td>0.000</td>
</tr>
<tr>
<td>(\beta_d)</td>
<td>0.492</td>
<td>0.004</td>
<td>0.000</td>
<td>0.403</td>
<td>0.059</td>
<td>0.000</td>
</tr>
<tr>
<td>Woman</td>
<td>-0.047</td>
<td>0.011</td>
<td>0.000</td>
<td>-0.064</td>
<td>0.016</td>
<td>0.000</td>
</tr>
<tr>
<td>Age 18 – 34 years</td>
<td>0.002</td>
<td>0.010</td>
<td>0.826</td>
<td>0.014</td>
<td>0.013</td>
<td>0.275</td>
</tr>
<tr>
<td>Age > 65 years</td>
<td>-0.071</td>
<td>0.040</td>
<td>0.078</td>
<td>-0.071</td>
<td>0.041</td>
<td>0.084</td>
</tr>
<tr>
<td>Part-time Employed</td>
<td>0.037</td>
<td>0.017</td>
<td>0.029</td>
<td>0.010</td>
<td>0.024</td>
<td>0.666</td>
</tr>
<tr>
<td>Self-employed</td>
<td>0.042</td>
<td>0.025</td>
<td>0.095</td>
<td>0.026</td>
<td>0.028</td>
<td>0.358</td>
</tr>
<tr>
<td>1 Adult in household</td>
<td>-0.054</td>
<td>0.017</td>
<td>0.001</td>
<td>-0.077</td>
<td>0.023</td>
<td>0.001</td>
</tr>
<tr>
<td>3+ Adults in household</td>
<td>-0.007</td>
<td>0.015</td>
<td>0.651</td>
<td>-0.010</td>
<td>0.016</td>
<td>0.527</td>
</tr>
<tr>
<td>Children in household</td>
<td>0.018</td>
<td>0.010</td>
<td>0.091</td>
<td>0.013</td>
<td>0.011</td>
<td>0.244</td>
</tr>
<tr>
<td>(\beta_x) Population density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1 persons/hectare</td>
<td>0.072</td>
<td>0.020</td>
<td>0.000</td>
<td>0.068</td>
<td>0.020</td>
<td>0.001</td>
</tr>
<tr>
<td>15 - 39.9 persons/hectare</td>
<td>-0.039</td>
<td>0.013</td>
<td>0.003</td>
<td>-0.054</td>
<td>0.016</td>
<td>0.001</td>
</tr>
<tr>
<td>40 + persons/hectare</td>
<td>-0.141</td>
<td>0.016</td>
<td>0.000</td>
<td>-0.162</td>
<td>0.021</td>
<td>0.000</td>
</tr>
<tr>
<td>Municipality size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>-0.328</td>
<td>0.018</td>
<td>0.000</td>
<td>-0.324</td>
<td>0.019</td>
<td>0.000</td>
</tr>
<tr>
<td>Other Metro Areas</td>
<td>-0.085</td>
<td>0.016</td>
<td>0.000</td>
<td>-0.091</td>
<td>0.017</td>
<td>0.000</td>
</tr>
<tr>
<td>Cities over 100 k</td>
<td>-0.051</td>
<td>0.014</td>
<td>0.000</td>
<td>-0.058</td>
<td>0.015</td>
<td>0.000</td>
</tr>
<tr>
<td>Villages under 3 k</td>
<td>0.068</td>
<td>0.020</td>
<td>0.001</td>
<td>0.092</td>
<td>0.026</td>
<td>0.000</td>
</tr>
<tr>
<td>Dummy 1999-2001</td>
<td>-0.006</td>
<td>0.011</td>
<td>0.596</td>
<td>0.006</td>
<td>0.013</td>
<td>0.675</td>
</tr>
</tbody>
</table>

Observations: 9361 9361
Adjusted R²: 0.671 0.655
F[18,9345] Prob = 0.000 0.000
Akaike Criterion: 1.320 1.365
Hausman test F-statistic: 2.398 Prob = 0.122
<table>
<thead>
<tr>
<th>Table 3. Structural parameters and effects of variables on commuting costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Speed</td>
</tr>
<tr>
<td>Log Income</td>
</tr>
<tr>
<td>Log Distance</td>
</tr>
<tr>
<td>Woman</td>
</tr>
<tr>
<td>Age 18 – 34 years</td>
</tr>
<tr>
<td>Age > 65 years</td>
</tr>
<tr>
<td>Part-time Employed</td>
</tr>
<tr>
<td>Self-employed</td>
</tr>
<tr>
<td>1 Adult in household</td>
</tr>
<tr>
<td>3+ Adults in household</td>
</tr>
<tr>
<td>Children in household</td>
</tr>
<tr>
<td>Population density</td>
</tr>
<tr>
<td>< 1 persons/hectare</td>
</tr>
<tr>
<td>15 - 39.9 persons/hectare</td>
</tr>
<tr>
<td>40 + persons/hectare</td>
</tr>
<tr>
<td>Municipality size</td>
</tr>
<tr>
<td>London</td>
</tr>
<tr>
<td>Other Metro Areas</td>
</tr>
<tr>
<td>Cities over 100 k</td>
</tr>
<tr>
<td>Villages under 3 k</td>
</tr>
<tr>
<td>Dummy 1999-2001</td>
</tr>
</tbody>
</table>

Note: In column (1), the (marginal) effects on the logarithm of the (variable) commuting costs (given the optimal speed level) are reported, using Table 1, column 2. Columns (2) and (3) report the structural parameters which can be interpreted as the (marginal) effects on the logarithm of the (variable) monetary commuting costs and value of time respectively.