Crustal fault reactivation facilitating lithospheric folding/ buckling in the central Indian Ocean

F. BEEKMAN,1 J. M. BULL,2 S. CLOETINGH1 & R. A. SCRUTTON3

1 Institute of Earth Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
Present address: Institut Français du Pétrole, BP 311, 92506 Rueil-Malmaison Cedex, France
2 Department of Geology, University of Southampton, Highfield, Southampton SO9 5NH, UK
3 Department of Geology and Geophysics, Edinburgh University, West Mains Road, Edinburgh EH9 3JW, UK

Abstract: High-quality, normal-incidence seismic reflection data confirm that tectonic deformation in the central Indian Ocean occurs at two spatial scales: whole lithospheric folding with wavelengths varying between 100 and 300 km, and compressional reactivation of crustal faults with a characteristic spacing of c. 5 km. Faults penetrate through the crust and probably into the upper mantle. Both types of deformation are driven by regional large intraplate stresses originating from the Indo-Eurasian collision. Numerical modelling of the spatial and temporal relationships between these two modes of deformations shows that, in agreement with geophysical observations, crustal faults are reactivated first with stick-slip behaviour. Subsequent lithospheric folding does not start until horizontal loading has significantly reduced the mechanical strength of the lithosphere, as predicted by elasto-plastic buckling theory. Modelling suggests that lithospheric folding does not develop in the absence of fault reactivation. Crustal fault reactivation, therefore, appears to be a key facilitating mechanism for oceanic lithospheric buckling in the central Indian Ocean.

Recent single-channel and multi-channel seismic reflection studies (e.g. Bull & Scrutton 1990, 1992; Pilipenko & Sivukha 1991; Chamot-Rooke et al. 1993) have demonstrated the occurrence of two spatial scales of active tectonic deformation in the central Indian Ocean (Fig. 1), confirming earlier findings from single-channel seismic reflection data and compilations of earthquake, heatflow, geoid and gravity data (Weissel et al. 1980; Geller et al. 1983). The tectonic deformation is characterized by long wavelength undulations of oceanic basement and overlying sediments, and superimposed small scale faulting and folding (Fig. 2). The active intraplate deformation in the Indian Ocean is thought to be driven by large regional compressional stresses (e.g. Curray & Moore 1971; Patriat & Achache 1984). The large stresses may originate from the intense plate boundary processes (Indo-Eurasian collision; Indonesian subduction) surrounding this intraplate section of the Indo-Australian plate (Cloetingh & Wortel 1985, 1986), or be related with a possible (nascent) diffuse plate boundary separating the Australian plate from the Indo-Arabian plate (Petrov & Wiens 1989; DeMets et al. 1990; Gordon et al. 1990; Royer & Chang 1991).

Several tectonic models have been proposed to explain the undulations of the oceanic basement, from the interpretations of geoid and gravity anomalies, seismic reflection and refraction studies, and numerical and analogue modelling. Most support is given to flexural folding/buckling of the mechanically strong upper part of the lithosphere (Weissel et al. 1980; McAdoo & Sandwell 1985; Karner & Weissel 1990; Bull et al. 1992; Martinod & Davy 1992; Molnar et al. 1993). Other proposed models are inverse boudinage of the oceanic crust caused by hydrodynamic viscous flow (Zuber 1987; Leger & Louden 1990), whole-crustal block faulting (Neprochnov et al. 1988), and a flexurally folded oceanic crust decoupled from the subcrustal lithosphere (Verzhbitsky & Lobkovsky 1993). Theoretical studies (e.g. Timoshenko & Woinowsky-Krieger 1959; Martinod & Davy 1992) show that some kind of perturbation is required to destabilize the homogeneous shortening of a plate under compression in order to initiate other modes of deformation. In the previously mentioned

Fig. 1. Shaded relief image of ERS/GEOSAT/SEASAT derived free-air gravity anomalies (Sandwell & Smith 1992) within the central Indian Ocean, and location map of main features. Boxes denote areas with consistently oriented linear trends in the gravity anomalies coinciding with axes of undulations of oceanic basement. Short line in left box denotes position of long seismic reflection line shown in Fig. 2.

Fig. 2. Migrated multichannel seismic reflection profile (from Charles Darwin cruise 28-CD28; Bull & Scrutton 1990, 1992). Location of the line is displayed in Fig. 1. Reverse faults cutting through the crust are indicated by arrows and possible Moho reflections are highlighted by dots. Vertical scale is in seconds, two-way travel time.
modelling studies of intraplate deformation, various perturbation mechanisms have been assumed, such as line loading by the aseismic Ninety-East Ridge (McAdoo & Sandwell 1985), the growth of mantle instabilities (Zuber 1987), point loading by seamounts (Karner & Weissel 1990), or surface sediment loading (Molnar et al. 1993).

However, regardless of the tectonic model and perturbation mechanism, all studies concentrate on reproducing only the long wavelength undulations of oceanic basement, neglecting the crustal faulting. This paper presents results of a numerical analysis using a nonlinear, elasto-plastic finite element method to analyse the temporal and spatial relationship between the two modes of tectonic deformation (lithospheric buckling and crustal fault reactivation) observed in the central Indian Ocean. The main objective is to investigate the role of crustal fault reactivation as a potential perturbation mechanism.

Intraplate deformation in the central Indian Ocean

In the central Indian Ocean Basin, undulations of oceanic basement and, if present, sedimentary cover (Figs 2 and 3) trend E–W to NE–SW, with an amplitude of 1–2 km and a wavelength that increases from less than 100 km in the south to more than 300 km towards the north, averaging around 200 km (Weissel et al. 1980; Zuber 1987; Neprochnov et al. 1988; Bull & Scroutton 1992). The increase in wavelength is possibly related to the northward increase in age from 40 to 70 Ma of the oceanic lithosphere, and the associated increase in flexural rigidity (McAdoo & Sandwell 1985).

Within the Wharton Basin the undulations have similar wavelengths and amplitudes, but strike more consistently NE–SW (Stein et al. 1989; Pilipenko & Sivukha 1991). In both basins, the axes of undulations are roughly perpendicular to directions of maximal horizontal compressional stress, as inferred from earthquake focal mechanism studies (Bergman & Solomon 1985; Levchenko 1989; Petrov & Wiens 1989) and numerical computations of the Indo-Australian plate stress field (Cloetingh & Wortel 1985, 1986). The basement undulations are not symmetrically shaped, but have broad lows and pronounced crests. In the southern parts of the area of intraplate deformation there is negligible sediment thickness. To the north, there is a progressive infill of the undulation lows by the sediments of the Bengal and Nicobar fans (Fig. 1).

Geoid and free-air gravity anomalies contour maps also exhibit undulating character (Fig. 1), correlating with oceanic basement undulations. Folding axes appear to be discontinuous and even seem to undergo rotation across old fracture zones (Bull 1990; Bull & Scroutton 1992). The offset of undulations across the fracture zones is consistent with N–S compression. Some rotation is to be expected as the 3-dimensional intraplate stress field is unlikely to be uniformly oriented over this wide area. This is compatible with stress orientations derived from earthquake focal mechanism studies (Bergman & Solomon 1984, 1985; Petrov & Wiens 1989). Numerical computations of the Indo-Australian plate stress field (Cloetingh & Wortel 1985, 1986) show how the unique geometry of the plate boundaries and the distribution of dynamic plate boundary processes (collision, subduction, spreading) led to rotated directions of principal stresses with variable magnitudes in the interior of the Indo-Australian plate.

![Fig. 3. North–south running profiles (for location see Fig. 1) of digitized acoustic basement (solid line) and free-air gravity anomaly (dashed line), demonstrating both spatial modes of tectonic deformation: long wavelength folding and small scale faulting.](image-url)
Superimposed on the long wavelength undulations of oceanic basement is intense short wavelength folding and faulting in the crust and overlying sediments. Recent multi-channel seismic profiles (Bull & Scrutton 1990, 1992; Chamot-Rooke et al. 1993) provide new evidence that the faulted blocks are bounded by high-angle reverse faults penetrating through the crust and possibly into the upper mantle (Fig. 2). Fault activity is recognized on the seismic images by displacements of oceanic basement and sedimentary horizons. Some unreactivated pre-existing basement faults have also been identified, as well as some intra-crustal low-angle faults and sub-horizontal reflectors. The new seismic data also reveals the widespread existence of open anticlinal folds of 5–10 km wavelength within the sedimentary cover, most of them occurring with limited faulting in the deeper parts or with faulting extending from seafloor to basement.

The fault pattern is very complex with variations in fault type, fault dip, dip direction, penetration depth, fault spacing and length, and fault activity. This is, for example, illustrated by the north–south running profile of acoustic basement (Fig. 3), where the small scale effects of varying fault throws are seen to be superimposed on the long wavelength undulations of the oceanic basement. The vast majority of high-angle faults display reverse displacements (Bull & Scrutton 1990; Pilipenko & Sivukha 1991). Basement faults can be divided into those that dip > 40° to the south, and those that dip 35–40° to the north. If penetrating into the sedimentary cover, faults dramatically steepen (40–90°), presumably due to the change in rheology (Melosh 1990). Some of the N-dipping faults can be resolved to Moho depth (Bull & Scrutton 1990). The S-dipping faults are less well resolved, as they dip more steeply. Both sets strike 90–100° E, roughly perpendicular to the strike of fracture zones in the area. The fault length averages = 10 km, with lengths up to 40 km. Average fault spacing is 5–6 km. The fault amplitude, in terms of the vertical throw of the basement/sedimentary cover interface, averages several hundreds of meters, ranging from very small (detection limit) to over more than 1000 meters (Chamot-Rooke et al. 1993). Some of the basement faults on the seismic profiles seem to penetrate the entire crust and possibly into the subcrustal lithosphere. Bull and Scrutton (1992) suggest that these faults may nucleate in the upper mantle at the brittle–ductile transition and propagate upwards, reactivating the ridge-parallel fault fabric in the oceanic crust.

These geometrical characteristics, together with other factors, have led to the interpretation that the faults result from the reactivation of the oceanic structural fabric that originated at the midocean spreading centres (Bull 1990). Steep dipping syn- and antithetic faults are formed in the transition of the rift valley into the rift mountains, creating fault blocks with widths ranging from 1–5 km (Macdonald 1982; Kazmin & Borisova 1992). A similar complex fault fabric (in pristine state), although, in general, with lower dips, has also been observed on seismic images of oceanic crust in the Atlantic (White et al. 1990).

Excellent resolution of faults is attributed to the presence of hydrothermal alteration fronts along the fault planes (Shipboard Scientific Party 1990; Bull & Scrutton 1992). The hydrothermal activity within the crustal fault blocks is thought to be responsible for the locally anomalously high surface heat flow measured within the intraplute deformation area (Geller et al. 1983; Stein & Weissel 1990). Regionally, heat flow is normal (as predicted by cooling plate models), indicating that there is no deep thermal origin for the driving mechanism of tectonic deformation. Furthermore, the presence of fluids in the fault planes may have a weakening effect on the frictional resistance against sliding (Brace & Kohlstedt 1980) and facilitate fault reactivation.

Seismic stratigraphy and DSDP and ODP drilling have demonstrated the presence of two major unconformities within the sediments of the Bengal and Nicobar distal fans over much of the central and northeastern part of the Indian Ocean (Cochran 1989; Curraj & Munasinghe 1989). An early Eocene (c. 55 Ma) unconformity is correlatable with the first stage of collision of the Indo-Australian plate with the Eurasian plate. A latest Miocene (7 Ma) unconformity has been correlated with the collision of the Indian continent with the Eurasian plate (Peirce 1978; Patriat & Achache 1984; Kloorwijk et al. 1985; Cochran 1989; Molnar et al. 1993). The Miocene unconformity separates pre- and syn-deformational sediments, dating the onset of the intraplate deformation at 7 Ma. There is little evidence for deformation before this time. Sedimentary onlap patterns suggest that at 7 Ma there was a major shortening event followed by several smaller pulses of intense fault block rotation and fault motion (Bull & Scrutton 1992). The relative timing of crustal faulting versus long wavelength folding is unclear, and requires more detailed stratigraphic analysis. Analysis of offset sedimentary horizons shows that on several faults displacement decreases steadily upwards: these faults grow by upwards propagation. Other faults have a roughly constant offset through time, and either formed rapidly at one of the deformation pulses, or are faults on which propagation is complete.

Statistical analysis shows that there is no relationship between magnitude of fault throw and
position relative to the long wavelength basement undulations (Bull 1990). Chamot-Rooke et al. (1993) report a gradual increase in fault throw from south to north over the area of intraplate deformation in the Central Indian Ocean Basin, likely related with the northward increase in sediment loading by the Bengal fan. These authors find for the same area a long wavelength (600–700 km) trend in fault downthrow direction. The southernmost area is affected primarily by north-dipping faults, the central area by south-dipping faults, whereas the more extensively deformed northernmost area has a mixture of both polarities, although with a majority of north-dipping faults. There is, however, no general relationship between fault downthrow direction and basement undulations (wavelength of c. 200 km), suggesting a flexural origin for the undulations. In some cases faults tend to downthrow downslope, accentuating the crests of the undulations.

Shortening of this part of the Indo-Australian plate, subject to large compressional stresses, is accommodated by both long wavelength folding and short wavelength faulting and folding. Digitization of oceanic basement from seismic profiles shows that the long wavelength contribution is equivalent to less than 0.1% shortening. Bull and Scrutton (1992) estimate from seismic sections the horizontal shortening due to the reverse faulting to be 1.2 (±0.4)%, corresponding to 18 (±6) km of shortening over 1500 km north-south extent of deformation. Chamot-Rooke et al. (1993) also assess a possible contribution from very small-scale faulting. Their estimates of the shortening range from 2.5% to maximal 4.3% when small-scale faulting is taken into account. When distributed over 900 km of deformed basement observed along their seismic profile, these estimates correspond with absolute shortening values of 22 km and 62 km, respectively. At the same longitude, plate tectonic reconstructions (Royer & Chang 1991) predict a finite shortening of 23 (±45) km. Assuming that the shortening has taken place in a steady way from the onset of deformation (7 Ma) until present, corresponding rates of shortening are 2.5 (±0.9) mm a⁻¹ (Bull & Scrutton 1992), 3 mm a⁻¹ (Royer & Chang 1991), and 6 (±3) mm a⁻¹ (Chamot-Rooke et al. 1993). This last is consistent with the 6 to 7 mm a⁻¹ rate inferred from plate kinematic models (Gordon et al. 1990). The pulselike character of shortening through time, as suggested by the deformation patterns in the sedimentary cover on the seismic profiles, may have led to higher shortening rates at certain times.

Active intraplate deformation is still taking place in the central Indian Ocean, as evidenced by the present-day occurrences of large intraplate earthquakes (Bergman & Solomon 1980, 1985; Levchenko 1989; Penty & Wiens 1989) and reported substantial micro-seismicity in this area (Levchenko & Ostrovsy 1993).

A finite element model

In order to investigate the temporal and spatial relationship between the two modes of tectonic deformation, numerical analyses are carried out using the finite element technique. The numerical analysis assumes a two-dimensional plane-strain approach, which is validated by the E-W continuity of the axes of the undulations of oceanic basement (Weissel et al. 1980; Bull & Scrutton 1992). A finite element model (Fig. 4a) is constructed comprising a 2000 km long, N–S section through the central Indian Ocean part of the Indo-Australian plate. To correctly compute displacements, finite elements in the faulted upper part of the plate must be small enough to allow deformation within the faulted blocks, and are therefore sized 1 x 1 km triangular in the uppermost 10 km, increasing in size to 1 x 5 km rectangular in the lower parts (Fig. 4b). For the full mesh with dimension 2000 x 40 km this becomes, including spring elements, 60,000 finite elements, connected by more than 42,000 nodal points, and with a total of more than 80,000 degrees of freedom. Correct behaviour of the elements is

Fig. 4. (a) Geometry and boundary conditions of the mechanical model. (b) Enlarged part of the finite element mesh showing geometry of the pre-existing crustal faults. (c) Geotherm (dashed) and yield-strength envelopes (continuous) for a 50 Ma oceanic lithosphere. Assuming hydrostatic pore pressure reduces the strength of the lithosphere.
ensured by using higher-order elements, in this case linear triangulars and quadrilaterals which have been expanded quadratically using 'incompatible modes of deformation' (e.g. Beekman 1994).

The complex fault geometry in the oceanic crust is approximated by including a simplified set of faults in the upper part of the plate model, which dip 45° and have a penetration depth and fault spacing of 5 km (average values). For the computations the finite element code TECTON is used (Melosh & Raefsky 1981), which contains the slippery node technique to model fault behaviour (Melosh & Williams 1989), and which is modified to also account for friction along fault planes and for elasto-plastic deformation (Beekman 1994).

The model boundaries are allowed to move freely in both the horizontal and vertical direction, except for the vertical outer edges which are restricted to move horizontally. The vertical buoyancy of the asthenosphere, which can be modelled as a fluid on geological timescales and which counteracts vertical motions of the overlying lithosphere, is included by attaching an array of linear elastic Hookean springs to the base of the plate. The springs will exert forces on the base of the plate, proportional to, but directed opposite to, any vertical deflection of the base of the plate. Horizontal boundary conditions at the N and S edge imitate the effects of the India–Himalayan collision and resistance associated with subduction along the Banda and Sunda arcs, and mid-ocean ridge push, respectively (Cloetingh & Wortel 1985, 1986). The plate is shortened with a velocity of 6.3 mm a⁻¹, according to the currently most accurate available shortening estimate for the area of deformation (Chamot-Rooke et al. 1993). For a 2000 km long plate, this velocity is equivalent to a strain-rate of ε = 10⁻¹⁶ s⁻¹, which is a value characteristic for the slow deformation of oceanic lithosphere (Carter & Tsvien 1987). Furthermore, the model is loaded with gravitational body forces.

The Indian oceanic lithosphere comprises a 6 km thick basaltic crust, overlying an olivine upper mantle. The age of the lithosphere in the areas of intraplate deformation in the Indian Ocean varies from 40 Ma in the south to 70 Ma in the north. An average age of 50 Ma is assumed for the entire plate model. The temperatures applied to the model are computed using this model geometry for which an initial steady-state temperature solution can be derived from the heat-conduction equation. Subsequently, the structure is allowed to cool through conduction of heat. Transient temperature fields are computed by solving the heat-conduction equation using a finite difference scheme (third order Runge-Kutta). Thermal properties are listed in Table 1. The assumed thermal boundary conditions are a constant surface temperature of 0 °C, and an initial surface heat flux of 80 mW m⁻², which is a characteristic value for young oceanic lithosphere (Sclater et al. 1980). The geotherm after 50 Ma of conductive cooling within the multi-layered oceanic lithosphere is computed for the adopted thermal initial and boundary conditions and plotted in Fig. 4c (dashed line).

The rheological behaviour of the rocks which constitute the lithosphere is derived from laboratory experiments, and subsequently extrapolated to geologically relevant timescales (assuming that the empirically derived rheological laws remain valid). At low confining pressures and low temperatures, brittle failure is predominant. The corresponding frictional yield criterion is given by Byerlee's law (Byerlee 1978), which can be rewritten in terms of effective principal stress difference, lithostatic overburden pressure, and pore fluid pressure (Ranalli, 1987):

\[\sigma_{\text{brittle}} = \sigma_1 - \sigma_3 = \alpha \rho g z (1 - \lambda) \] with

\[\alpha = \left\{ \begin{array}{ll}
R - 1 & \text{for normal faulting} \\
R & \text{for thrust faulting} \\
R - 1 & \text{for strike-slip faulting}
\end{array} \right. \]

and where \(\sigma_1 \) and \(\sigma_3 \) are the maximum and minimum principal stress, respectively, \(\rho \) is density, \(g \) is gravitational acceleration, \(z \) is depth, and where

\[\lambda = \frac{\rho_p}{\rho} = \frac{\rho_m}{\rho} = 0.35 \]

\[0 < \beta < 1 \]

is the pore fluid factor, here for hydrostatic pore pressure

\[\sigma_1 - \sigma_3 + \beta (\sigma_1 - \sigma_3) \]

denotes magnitude of intermediate stress:

\[R = [(1 + \mu^2)^{1/2} - \mu]^{-2} \]

where \(\mu \) is the (static) friction coefficient.

Steady-state creep of a wide variety of rocks is empirically described by a ductile flow law which relates the critical principal stress difference necessary to maintain a given steady-state strain-rate of deformation to a power of the strain-rate, and which is, therefore, called power-law creep (Kirby 1983):

\[\sigma_{\text{creep}} = \sigma_1 - \sigma_3 = \left(\frac{\varepsilon}{A_p} \right)^{1/N} \exp \left[\frac{E_p}{NRT} \right] \]

where \(A_p \), \(N \), and \(E_p \) are empirically determined material 'constants', assumed not to vary with stress and P–T-conditions (Ranalli, 1987). Microphysically this type of creep mainly involves dislocation climb. The ductile flow law (equation 2) shows that the variation of the creep stress with
Table 1. Physical parameters and material properties

<table>
<thead>
<tr>
<th>Definition</th>
<th>Symbol</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravitational acceleration</td>
<td>(g)</td>
<td>m s(^{-2})</td>
<td>9.81</td>
</tr>
<tr>
<td>Universal gas constant</td>
<td>(R)</td>
<td>J mol(^{-1}) K(^{-1})</td>
<td>8.314</td>
</tr>
<tr>
<td>Seawater density</td>
<td>(\rho_W)</td>
<td>kg m(^{-3})</td>
<td>1030</td>
</tr>
<tr>
<td>Sediment density</td>
<td>(\rho_s)</td>
<td>kg m(^{-3})</td>
<td>2200</td>
</tr>
<tr>
<td>Moho depth</td>
<td>(z_m)</td>
<td>km</td>
<td>6</td>
</tr>
<tr>
<td>Mantle melt temperature</td>
<td>(T_m)</td>
<td>°C</td>
<td>1300</td>
</tr>
<tr>
<td>Mantle basal heat flux</td>
<td>(q_b)</td>
<td>mW m(^{-2})</td>
<td>23</td>
</tr>
<tr>
<td>Static friction coefficient</td>
<td>(f_s)</td>
<td>s(^{-1})</td>
<td>0.6</td>
</tr>
<tr>
<td>Bulk strain-rate</td>
<td>(\dot{\varepsilon})</td>
<td>s(^{-1})</td>
<td>10(^{-15})</td>
</tr>
</tbody>
</table>

Petrology			
Density	\(\rho \)	kg m\(^{-3}\)	
Young's modulus	\(E \)	GPa	
Poisson's ratio	\(\nu \)		
Thermal conductivity	\(k \)	W m\(^{-1}\) K\(^{-1}\)	
Specific heat	\(\sigma_p \)	J kg\(^{-1}\) K\(^{-1}\)	
Heat production	\(A \)	\(\mu W m^{-3} \)	
Exponential heat decay rate	\(h \)	km	10
Power law exponent	\(N \)		3.0
Power law activation energy	\(E_p \)	kJ mol\(^{-1}\)	140
Power law strain rate	\(A_p \)	Pa s\(^{-N}\)	510
Dorn law activation energy	\(E_D \)	kJ mol\(^{-1}\)	535
Dorn law strain rate	\(A_D \)	s\(^{-1}\)	5.7 10\(^{11}\)
Dorn law stress	\(\sigma_D \)	GPa	8.5

Failure/creep functions			
Brittle failure	\(\sigma_{brittle} = \alpha p (1 - \lambda) \)		
Power law creep	\(\sigma_{creep} = (\varepsilon/A_p)^{1/N} \exp \left[E_p/(NRT) \right] \)		
Dorn law creep	\(\sigma_{creep} = \sigma_d (1 - (RT/E_D) \ln (\varepsilon/A_D))^{1/2} \)		

Sources
- Goetze & Evans 1979
- Carter & Tsenn 1987
- Tsenn & Carter 1987
- Carmichael 1989

* 'wet' refers to rock samples that contain variable amounts of structural water

Depth is strongly controlled by rock-type and temperature. A steady-state bulk strain-rate of \(10^{-16} \ \text{s}^{-1}\) is assumed, induced from the applied velocity boundary condition.

Above a critical stress level (= 200 MPa), power law creep breaks down into high-stress, low-temperature plasticity (dislocation glide), which is phenomenologically described by a Dorn law (Goetze & Evans 1979; Tsenn & Carter 1987):

\[
\sigma_{creep} = \sigma_d (1 - (RT/E_D) \ln (\varepsilon/A_D))^{1/2}
\]

with \(A_p, E_D, \) and \(\sigma_d \) material properties, assumed, as before, to be constant.

A depth-varying rheology has been incorporated in the finite element model with elasto-brittle deformation in the upper parts of the oceanic lithosphere and ductile deformation in the lower parts. The associated yield envelope has been constructed using the rheological equation (1) for brittle failure, and equations (2) and (3) for creep flow (at a constant strain-rate of \(10^{-16} \ \text{s}^{-1}\) of rocks, respectively, and assuming a basaltic crust and a olivine subcrustal lithosphere. Adopted material properties and physical parameters are listed in Table 1. The empirical rheological equations and laboratory derived material properties are used under the assumption they are also valid when extrapolated to geological strain-rates and macroscopic scales. The brittle-ductile transition lies at a depth of 24 km. The depth at which the yield envelope has reduced to an arbitrary small stress level in the order of 10 MPa (Ranalli 1987) indicates the base of the mechanically strong upper part of the lithosphere, and is used in the modelling to control the depth of the lower boundary of the numerical plate model, here selected at 40 km depth.
Based on the presence of hydrothermal fluid convection in the upper part of the oceanic lithosphere (Shipboard Scientific Party 1990) a hydrostatic pore fluid pressure is assumed, which significantly weakens the brittle strength of the lithosphere (equation (1), parameter \(\lambda \)). Hydrothermal fluid alteration fronts seem to coincide with pre-existing fault planes in the crust, and are thought to lower the frictional resistance against renewed sliding along the fault planes (Brace & Kohlstedt 1980).

Brittle deformation in the depth range over which the pre-existing faults extend is assumed to be carried out explicitly by these predefined faults. Therefore, no (brittle) yield stress is assigned to the finite elements in this upper part of the plate. Over the remaining depth range down to the brittle–ductile transition there is no information on whether brittle deformation occurs as fracturing of rocks or as fault reactivation. What is known, as evidenced by the existence of deep earthquakes, is that it does occur. Below the resolution depth of the seismic profiles, which is approximately Moho depth, there is no geometrical information of faults (if existing). Therefore, no faults are incorporated at depths exceeding Moho depth. The elements in this depth range are nevertheless characterized by a brittle yield stress assigned on the basis of the empirical brittle deformation equation (1), although any associated brittle failure is modelled numerically as plastic flow (Beekman 1994).

Results

At time zero the plate undergoes an instantaneous displacement downwards in response to the gravitational loading of the model (see, for example, Fig. 6a). This is followed by a slow linear uplift of the plate surface in response to continuing horizontal shortening. After several million years of shortening (0.3% of shortening occurs in a period of 1 Ma), the models start to develop a folding phase, as illustrated by the evolution of the surface deflection of the plate (Fig. 5a). Fourier spectral analysis of the calculated surface folding demonstrates a dominant wavelength between 200 and 350 km (Fig. 5b).

The folding evolves nonlinearly through time: after several Ma, surface deflections (Fig. 6a) begin to deviate from the homogeneous uplift trend and accelerate upward or downward depending on their position inside a fold (crest or trough). The onset of the deviations corresponds to the onset of lithospheric buckling.

Comparison of Figs 6a and b shows that fault activity starts before the onset of the large scale folding. The pre-defined faults in the models exhibit typical stick-slip behaviour through time (Fig. 6b). Jumps in fault slip (at the surface of the plate) are in the order of several meters, accumulating to throws of more than 100 m (Fig. 6b). After long wavelength folding has started to develop, fault activity becomes more complex with some faults exhibiting accelerated reversed faulting.

Fig. 6. (a) Vertical deflection through time of distinct points at the surface of a horizontally compressed oceanic lithospheric plate which has pre-existing faults in its crust which get reactivated through time in a stick-slip way. Curves are for surface points separated by a horizontal distance of 50 km. The nonlinear time response is typical for a buckling mode of plate deformation. Thick, grey line illustrates behaviour of a plate with locked faults: no buckling. (b) Amount of net slip through time at the surface appearance of a fault. Curves are for every tenth fault (horizontal separation of 50 km). Reverse slip is positive, normal slip is negative. Note the typical stick-slip response. Comparison of fig. (6a) and (6b) indicates that crustal fault reactivation occurs before lithospheric buckling starts.
some faults stay locked, and some faults even show normal faulting.

The spatial relationship between long wavelength folding and intensity of faulting is demonstrated by plotting the surface deflection (black line) of the plate in combination with the course of the amount of surface fault slip (grey line) over the plate, both after 8 Ma of shortening (Fig. 7a). Clearly, maxima in throw coincide with fold, whereas minima in fault surface throw coincide with fold highs. Furthermore, the surface slip of all faults over the distance from 900 km to 1100 km, which roughly comprises one fold, has been plotted versus time (Fig. 7a). The black curves show slip for faults located between 900 km and 1000 km, roughly coinciding with a fold low. Grey curves are for faults between 1000 km and 1100 km, coinciding with a fold high. All ‘low positioned’ faults exhibit accelerating reverse faulting, thus producing the maxima in fault slip, whereas the ‘high positioned’ faults show fault locking or even an inversion to normal faulting, both responsible for the fault slip minima.

This link between fault activity and fold geometry suggests that the amount of slip of a fault at its surface appearance may also vary with its position within a fold. This is confirmed by Fig. 7b, which displays the surface deflection of the plate after 8 Ma of shortening (black line) as well as the course of the amount of surface slip over the plate (grey line). As expected, maxima in throw coincide with fold lows where accelerating reverse faulting takes place. Minima in fault surface throw coincide with fold highs where faults get locked or throw decreases through normal faulting.

Figure 8a depicts vertical effective stress* profiles inside the plate (at the position denoted by the arrow in Fig. 5a) at several stages of compression. The adopted yield stress envelope limits the effective stresses in the upper brittle and lower ductile part of the lithosphere. In the faulted upper part of the plate, stress profiles develop that have a steeper slope than the theoretical brittle yield envelope. Furthermore, high effective stresses appear at a depth of 5 km (Fig. 8a), which is the depth at which the predefined faults in the model end. The steeper slope, equivalent to a higher ‘fault reactivation’ stress, arises from pre-setting the dip angle of the predefined fault planes. This results, in general, in an angle between fault planes and maximal principal stress that is not the optimal angle for faulting (according to a Mohr diagram) (Jaeger & Cook 1976). More effective stress is required for reactivation than in the case of an optimal angle, on which the yield stress value is based.

Immediately below the layer which contains the faults effective stresses reach the yield stress limit over an increasingly larger depth range. At depths where this occurs, rocks will deform in a brittle way. Stress also increasingly reaches the yield limit in the lowermost part of the plate model, where rock deformation will occur by ductile flow.

Also illustrated by Fig. 8a is the decrease in thickness of the strong elastic core of the oceanic lithosphere and the associated saturation of the yield envelope, until after c. 8 Ma the elastic core has almost vanished and is not able to mechanically sustain the stresses anymore. The lithosphere starts to fail completely, which will result in extensive deformation, as is numerically indicated by the acceleration of the surface deformation of the plate model and by the increase in magnitude of fault slip (Figs 6a and b).

The stick-slip behaviour of faults is also reflected in the temporal fluctuations of effective stress within crustal finite elements (Fig. 8c). Curves are for the first 5 upper-triangular elements in the column below the location denoted by the arrow in Fig. 5a. The ‘lowest stress’ curve belongs to shallowest element (depth range 0–1 km), whereas the ‘highest stress’ curve belongs to the deepest considered element (depth range 4–5 km).

*Effective stress is a useful scalar representation of the deviatoric state in a solid or fluid, and is the square root of the second invariant of the deviatoric stress tensor: $\sigma_E = (J_2)^{1/2} = (s_{yy}: s_{yz})^{1/2}$.
Repeted periods of stress buildup are followed by unlocking of the fault and displacement of the fault blocks resulting in stress relaxation. Stress drops associated with the stick-slip fault activity are in the order of a few tens of mega pascals. Comparison of stress drops from the same event yields information on propagation direction of fault reactivation. Although not always clearly distinguishable it is possible to recognise downwards propagating stress drop fronts (for example, between 3 and 3.5 Ma) as well as upwards propagating stress drop fronts (e.g. just after 6 Ma), while the event after 7.3 Ma seems to reactivate the entire fault almost instantaneously. The upwards propagating event, occurring slightly after 6 Ma, starts in the middle of the crust (not originating from a deeper level).

An additional numerical experiment has been undertaken to investigate whether it is indeed the reactivation of the faults, and associated local changes in stress and strain, that ultimately cause the large scale buckling of the plate. To ensure that the faults do not reactivate they have been assigned a very high friction coefficient. Furthermore, the elements in the ‘faulted’ upper part of the plate have now a yield stress, according to the regular yield envelope (Fig. 4c), to avoid this layer behaving as an elastic layer. Thus, failure is still included in this layer with a brittle yield stress derived from the brittle failure equation (1), but the associated deformation is now simulated numerically by plastic flow. The results show that in this case even after 10 Ma of convergence (equivalent to a horizontal shortening of 3%), the initially flat plate is still flat and has not developed a folding mode of deformation. Reflections and power spectra of the plate surface at several times are included in Figs 5a and b, but no harmonic deviations are evident. This is also demonstrated by Figs 6a and b, where the temporal course of surface point deflection and surface fault slip are shown by the grey curves. The small, straight slope of the vertical deflection curves in Fig. 5a indicates the homogeneous thickening of the plate in response to the horizontal shortening. Folding/buckling is absent, even when the elastic core of the oceanic lithosphere has almost vanished. This demonstrates that it is the crustal fault reactivation and associated changes in stress and strain, that in these finite element models acts as the perturbing mechanism that facilitates the large scale mode of tectonic deformation.

Discussion

Although quite advanced in the treatment of frictional faulting and the incorporation of a non-linear depth-varying rheology, the numerical models that have been used are relatively simple when considering the complex features and processes within the oceanic lithosphere of the central Indian Ocean. Nevertheless, the models successfully predict stress and strain patterns associated with the long wavelength folding and small scale faulting occurring in this intraplate part of the Indo-Australian plate, which is subjected to considerable compressional stress loading and associated tectonic shortening.

The dominant wavelength of large scale folding that is developed in the models lies well within the range of observed wavelengths in the central Indian Ocean (Zuber 1987). It is slightly larger than the average observed wavelength, but this can be attributed to the simplified character of the model, not accounting for weakening effects introduced by intra-lithospheric inhomogeneities. The yield envelope, which exerts a major control on the flexural rigidity of the lithosphere, is also a theoretical idealization, probably resulting in a mechanically too strong lithosphere. The sharp
brittle-ductile transition, for example, will probably be transitional, as argued by Carter & Tsenn (1987). Furthermore, recent rock mechanic experiments (Ord & Hobbs 1989) indicate that the linear brittle branch of the yield envelope may even break down, and maximum sustainable stresses may be as low as 300 MPa, substantially reducing the maximum strength of the lithosphere.

The nonlinear behaviour through time is consistent with the 'buckling' response of a horizontally compressed plate, characterized by rapidly accelerating vertical displacements prior to full lithospheric failure (Cloetingh et al. 1989; Stephenson et al. 1990; Stephenson & Cloetingh 1991). Analysis of vertical effective stress profiles shows that buckling starts when the remaining elastic core of the oceanic lithosphere has almost vanished, as predicted by elasto-plastic plate deformation theory (McAddo & Sandwell 1985).

Fault activity starts before the onset of the large scale folding. The increasingly complex activity of the pre-defined faults after long wavelength deformation has started to develop, seems to be caused by an interaction of developing bending stresses with the tectonic compressional stress. Support for this is given by the relationship of fault type and folding magnitude with fault position within a long wavelength fold. Bending would produce additional compressive stress in the down-flexed areas and tensile stress in the up-flexed areas. These compressive or tensile bending will, respectively, assist or counteract the tectonic stresses. This leads to a decrease in effective stress in up-flexed regions, accompanied by permanent locking of faults, or even leads to net tensile effective stresses and normal fault reactivation, as indeed demonstrated by the model results. Statistical analysis of bathymetric and seismic data is required to see if the effects of bending are present.

The pre-defined faults in the models exhibit typical stick-slip behaviour through time. Jumps in fault slip at the plate surface are in the order of several meters, cumulating to throws at the plate's surface of more than 100 m. These values fit with measured fault slips on seismic profiles (Bull & Scutton 1992; Chamot-Rooke et al. 1993). The stick-slip fault activity is in agreement with observations of substantial microseismicity in the crust of the central Indian Ocean (Levchenko & Ostrovsky 1993). Deep earthquakes, which have been observed in this intraplate area (Bergman & Solomon 1980, 1985), are also correctly predicted by the models with stress within the plate reaching the brittle failure limit over considerable depth ranges down to the brittle-ductile transition (Govers et al. 1992). Reactivation fronts along a single fault can propagate downwards as well as upwards, or reactivate the entire fault instantaneously. Upwards propagating faults and possibly rapidly formed faults have been identified on the seismic stratigraphic record (Bull & Scutton 1992). More analysis is required to check if there are relationships of type of fault reactivation with the position of the fault concerned relative to the long wavelength folds.

The numerical models develop high effective stresses at the tips of the faults. These stress concentrations can be interpreted physically as being responsible for propagation of faults. Such stress concentrations at fault tips are predicted theoretically by the Griffith Crack Theory (Scholz 1990), and are consistent with rock-mechanics experiments showing that stress concentrations do occur at fault tips (Jaeger & Cook 1976).

Modelling also shows that no long wavelength mode of tectonic deformation develops when there is no fault activity. This demonstrates that in this study the adopted 'simplified' model geometry and boundary conditions the crustal fault reactivation and associated changes in stress and strain act as the essential perturbing mechanism that facilitates the large scale mode of tectonic deformation.

The complex fault fabric in the Indian Ocean crust has been approximated by a simplified set of faults with a geometry based on average values. Additional numerical analyses have to be carried out to investigate if variations in one or more of the fault parameters (such as dip, dip direction, penetration depth) have a major influence on the long wavelength deformation of the Indian Ocean lithosphere. The successful predictions of the numerical model with the 'average' fault set do suggest, however, that it is merely the reactivation of faults that is of essential importance rather than the geometrical features of the faults.

Another model simplification which may affect the model results is the assumption of a constant lithospheric thermal age (and thus lithospheric thickness) for the entire model, whereas the thermal age of the area of interest ranges from approximately 40 Ma in the south to 70 Ma in the north. The increase in age is probably gradual to initiate the intraplate deformation. It may, however, affect the wavelength of the large scale folding, as with age also the flexural rigidity of the lithosphere increases, which will lead to a larger wavelength of deformation (McAddo & Sandwell 1985). Zuber (1987) indeed observed a gradual northward increase in the wavelength of lithospheric folding in the central Indian Ocean.

Conclusions

Substantial compressional stresses in the central Indian Ocean reactivated pre-existing crustal faults,
and, in a later phase, initiate folding and buckling of the entire oceanic lithosphere. Stress and strain patterns, spatial as well as temporal, are successfully predicted by the numerical models, and are in agreement with geophysical observations. The modelling also demonstrates that in the absence of fault reactivation no lithospheric folding develops. Crustal fault reactivation, therefore, appears to be essential to facilitate long-wavelength oceanic lithospheric buckling in the central Indian Ocean.

We thank G. Ranalli and R. A. Stephenson for their constructive reviews of an early draft of this paper. Comments by F. Nieuwland and an anonymous reviewer are also gratefully acknowledged.

References

