Acknowledgements

The presence of this thesis, most of all, shows my fortune in love and support. It gives me great pride and happiness to find myself amongst so many great people that have meant the world to me; throughout my upbringing, my golden student years, and my privileged early-career experiences, that ultimately led me to be able to perform the scientific studies and production of this thesis.

First and foremost, my gratitude to my mother Elly, father Heimen, and my parents Rob, Sylvia, and Mirjam, who have been integral to the personality traits that I developed in their example. Also to my highly appreciated brothers, Martijn, Mark, Kevin, and best mate Vincent, who have been exemplary and continue to be a metaphorical soundboard from which I could tune some of my dissonant tones, and remind me to ground myself.

To Adrienne, thank you. Thank you for your kind patience and loving dedication.

To my highly esteemed mentor, Eus, thank you for your confidence in me, your insights, plain hard work, and memorable dinners. Frans and Lucia, thank you for providing your valuable complementary views on the findings from which I have learned a great deal. The combined amount of knowledge that I have gained from my fellow peers is immense, thanks to all the Sleep and Cognition team members over the years. But before listing these members, a special praise to Oti: thank you for being such an integral part of my projects, you moved mountains. Then, thanks to Diederick for your assistance with all the neuroimaging studies, to
Jennifer for all the EEG studies, to Jeroen for all NSR-related studies, and thanks to my highly appreciated colleagues Michele, Yi-Shu, Wisse, Kim, Bart, Tessa, German, Yvonne, Michelle, Jessica B, Jessica F-D, Jeanne, Marije, Jeffrey, Simon, Teodora, Jacob, Marco, Casey, Rebecca, Floor, Joy, Enzo, Frank, Nico, Yoshi, Ilse, Giovanni, and all supporting colleagues at the Netherlands Institute for Neuroscience, especially those in the mechatronics department for their assistance in the development of the olfactometers. Further thanks to the students that helped enormously with the logistics and data-acquisition, and from whom I also learned a great deal; Chris, Vanessa, Melanie, Katharina, Lars, Caroline, Sanne, Merel, Geertje, and Nouschka.

A special thanks to all the participants involved in the studies. This thesis is built on their voluntary participation in filling out questionnaires, overnight sleep-EEG recordings, and lengthy MRI acquisitions. In the many conversations with the participants, I have learned the personal stories behind insomnia disorder, and those have been key in my understanding of the scientific material presented in this thesis.

A big thanks to my amazing friends. We enjoyed many evenings of food, drinks and had long discussions and debates on the details of my research, the future of science and philosophy. I remember specifically when we learned all about gravitational waves during brunch and mimosa's. I could not have done it without you all, so thank you for the support and laughter your friendship provides.

This thesis was written on an old desk in a beautiful room on the South Coast of Australia, the home of my in-laws, thank you for supporting Adrienne and I as we finalised one stage of our life, and began the next as a married couple, and PhD.

Much obliged,

Rick
List of Tables and Figures

Table 2.1. Factor analysis distinguishes long-lasting and short-lasting emotional distress

Figure 2.1. Disturbed emotion regulation in insomnia specifically concerns overnight dissolving of distress

Figure 2.2. Structural Equation Model

Supplementary table S2.1. Mediation effects and variance explained by three-variable structural equation models interchanging the roles of nocturnal mentation, long-lasting distress and hyperarousal as dependent, independent and mediator variables

Supplementary Figure S2.1. Structural equation model restricted to 686 participants

Table 3.1. Mean sleep quantity and quality estimated from five nights of sleep diary data

Figure 3.1. Examples of two individual schedules out of twelve possible counterbalanced schedules

Figure 3.2. Changes in the perceived physical distress of shame

Figure 3.3. Visualization of physical distress changes from one to the next exposure

Supplementary Table S3.1. No associations between sleep diary parameters and overnight changes in perceived physical shame

Table 4.1. Demographic and sleep characteristics of normal sleepers and subjects with ID.

Figure 4.1. Induction of novel and relived self-conscious emotions
Table 5.4.
CS+ TMR during REM episodes enhances the adverse effect of REM interruption density on overnight amygdala reactivity adaptation

Supplementary figure S5.1.
Custom build olfactometer

Supplementary table S5.1.
Demographics and associations between sleep parameters and subjective insomnia complaints

Supplementary table S5.2.
Allocation of the four odor compounds for the CS+ and CS–

Supplementary table S5.3.
CS+ and CS– re-exposure proportions

Supplementary table S5.4.
Coordinates and statistics of brain regions showing a significant BOLD response to one’s own singing relative to baseline

Table 6.1.
Demographics and sleep characteristics (subjective, AASM-based and LDA model-based) in ID and controls

Figure 6.1.
Symbolization of raw EEG for the purpose of Latent Dirichlet Allocation (LDA) topic modelling

Figure 6.2.
Estimation of concurrent vigilance states in each 30-second epoch

Figure 6.3.
Examples of topic diagrams

Table 6.2.
Increased light sleep dominance in ID

Figure 6.4.
Light sleep-related EEG signatures are more abundant during light and deep sleep in ID than in controls

Table 6.3.
Increased N1 sleep-related EEG signatures during deep sleep related periods in ID

Figure 6.5.
Increased probability for transitions from deep sleep to light sleep in ID as compared to controls

Supplementary table S6.1.
Normalized co-occurrence of topics for stable epochs dominated by each topic
List of Publications

