Table of Contents

Acknowledgements

1 Introduction

1.1 Background biology

1.1.1 Deoxyribonucleic acid

1.1.2 DNA as the carrier of genetic information

1.2 Genomic data

1.2.1 Gene expression data

1.2.2 Copy number data

1.3 State of the art in Statistical Genomics

1.4 Thesis organisation

2 Fused lasso classifier

2.1 Introduction

2.2 Methods

2.2.1 Gradient Ascent

2.2.1.1 Regions, Constraints, Null Space and Projection Matrices

2.2.1.2 Calculating the penalized gradient

2.2.1.3 Finding the optimum and upgrading the coefficients

2.2.2 Newton-Raphson

2.2.3 Computational aspects and cross-validation

2.3 Results

2.3.1 Multiple Myeloma dataset

2.3.2 Bladder Cancer Data

2.3.3 Simulation study

2.4 Discussion

2.5 Conclusion
TABLE OF CONTENTS

5 dNET

5.1 Introduction .. 82
5.2 Methods ... 83
 5.2.1 Motivation 83
 5.2.2 Modelling the difference between the phenotypic groups 84
 5.2.3 Testing for a difference 85
 5.2.4 Estimation of parameters 86
 5.2.5 Permutation p-values 86
5.3 Results .. 87
 5.3.1 Application on simulated datasets 87
 5.3.1.1 Simulation setup 87
 5.3.1.2 Simulation study 1 88
 5.3.1.3 Simulation study 2 88
 5.3.1.4 Simulation study 3 89
 5.4 Application on TCGA cancer datasets 90
5.5 Discussion and Conclusion 92

6 Discussion ... 95

6.1 Fused lasso for copy number based classification 95
6.2 Integration analysis 95
6.3 Detecting differential associations 96
6.4 Association analysis between two high dimensional sets of variables 96
6.5 Differential network analysis based on gene sets 97
6.6 Multiple groups for differential analysis 97

7 Summary .. 98

Samenvatting .. 100

References ... 103

Appendix A ... 113

Appendix B ... 115

B.1 Simulation study setup 115
 B.1.1 Generating copy number data 115
 B.1.2 Generating gene expression data 115
 B.1.3 dSIM detects correct regions 116
 B.1.4 dSIM corrects for baseline effect 116
 B.1.5 Sensitivity of dSIM towards changes in lambda values . 117
B.2 dSIM test statistic 118
B.3 Table S1 ... 119
Appendix C

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1</td>
<td>Simulation setup</td>
<td>137</td>
</tr>
<tr>
<td>C.1.0.1</td>
<td>Generating copy number data</td>
<td>137</td>
</tr>
<tr>
<td>C.1.0.2</td>
<td>Generating gene expression data</td>
<td>137</td>
</tr>
<tr>
<td>C.1.0.3</td>
<td>Case 1: Widespread weak associations</td>
<td>138</td>
</tr>
<tr>
<td>C.1.0.4</td>
<td>Case 2: Localized strong associations</td>
<td>138</td>
</tr>
</tbody>
</table>