CONTENTS

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
 1.1 Checkpointing ... 4
 1.1.1 The Costs of Memory Checkpointing 4
 1.2 High Frequency Checkpointing 6
 1.3 Improving In-Memory Checkpointing 7
 1.3.1 User-level High Frequency Checkpointing .. 7
 1.3.2 Kernel-level High Frequency Checkpointing .. 8
 1.3.3 Dealing with Millions of Checkpoints 8
 1.4 Structure of this Thesis 8

2 Lightweight Memory Checkpointing 11
 2.1 Introduction ... 11
 2.1.1 Memory Checkpointing 11
 2.1.2 User-level Memory Checkpointing 12
 2.2 Overview ... 14
 2.2.1 Memory Write Instrumentation 15
 2.2.2 Shadow State 16
 2.3 Shadow State Organization 16
 2.3.1 Memory Address Space Layout 16
 2.3.2 Stack Relocation 18
 2.3.3 Tagmap 19
 2.4 Tagmap Management 19
 2.4.1 Memory Region Size 19
visit to New York and the great input you gave during our weekly status calls. Kaveh Razavi has been a great help when proof reading parts of this thesis. Thank you. I am especially grateful to Ben Gras, not only for being a beacon of wittiness and laughter but also for translating the summary of this thesis into the Dutch language.

I also had the pleasure to advise and co-supervise some brilliant master students while being at the VU Amsterdam: Niek Linnenbank, Sharan Santhanam, Koustubha Bhat and Armando Miraglia. Armando’s work is covered in this thesis and I am happy to have him as one of my parymphs.

And thank you, Caroline Wajj, for always being helpful with administrational tasks.

The VU Amsterdam is fantastic place to meet awesome people. There are of course my P4.69 office mates Cristiano Guiffrida, David van Moolenbroek, Erik van der Kouwe, Raja Appusamy and Thomas Hruby: Thank you for the pleasant work environment and all the interesting discussions. I saw you leaving the nest one after the other and now that it’s my turn I am happy to have one of you on my thesis committee. Then there is the rest of the Minix team: Arun Tomas, Ben Gras, Lionel Sambuc, Philip Homburg, Thomas Veerman, Kees Jongeberger and Gianluca Guida. I also want to thank Ana-Maria Oprescu for adopting me when I arrived, Claudio Martella for the fun coffee breaks, and David Moolenbroek and Philip Homburg for their friendship and Dutch lessons. You all made the VU a very special place for me.

While the Django Building not only opened a door to affordable housing (not a given in Amsterdam) it also opened a door to countless evenings with great conversations, food and friendship! Thank you Laura, Cristiano, Raja, Stefano, Kaveh, Andrei, Andre, Jailan and Ismail. And thank you, Christian, for representing Django at my defense as my parymph.

I wouldn’t be complete without the most important people in my life, my family, which—as a great side-effect of me taking such a long time to finish—expanded since I started my PhD. But, let me first thank those that were always there: My parents. Their unconditional love and support, not only during my PhD, gave me confidence, strength and I am grateful for every single day with them.

At last, I want to thank Albana, my love. Thank you for giving me the greatest gift. You supported me more than you can imagine and I don’t know how I can make up for all the sacrifices you made during this time.

Dirk Vogt
Amsterdam, The Netherlands, February 2019
2.4.2 Metatagmap ... 21
2.4.3 Resetting the Tagmap 22
2.4.4 Thread Safety ... 22
2.5 Optimizations ... 23
 2.5.1 Reducing Instrumentation Costs 23
 2.5.2 Reducing Checkpointing Costs 26
2.6 Alternative Techniques 26
 2.6.1 Fork-based Checkpointing 26
 2.6.2 Mprotect-based Checkpointing 27
 2.6.3 Soft Dirty Bit-based Checkpointing 27
 2.6.4 Undolog-based Checkpointing 28
2.7 Evaluation ... 28
 2.7.1 Checkpointing Performance 30
 2.7.2 Effectiveness of the Optimizations 31
 2.7.3 Impact of Duplicate Writes 35
 2.7.4 Instrumentation Performance 35
 2.7.5 Memory Usage 36
2.8 Conclusion .. 37

3 Speculative Memory Checkpointing 39
 3.1 Introduction ... 39
 3.2 Background .. 41
 3.3 SMC .. 43
 3.4 Framework Overview 46
 3.4.1 Checkpointing Component 47
 3.4.2 Speculation Component 49
 3.5 Speculation Strategies 49
 3.5.1 Classic WSE Strategies 50
 3.5.2 Genetic Speculation 51
 3.6 Implementation 53
 3.7 Evaluation .. 55
 3.7.1 Performance 56
 3.7.2 Checkpointing Frequency Impact 58
 3.7.3 Accuracy ... 59
 3.7.4 Memory Usage 61
 3.7.5 Restore Time 61
 3.8 Related Work ... 62
 3.9 Conclusion .. 64