Table of contents

I. Introduction and analytical procedures
1. Introduction - planet formation and differentiation processes. 9
2. LA-ICP-MS analyses of trace elements in Fe-rich alloys: quantification of matrix effects for 193 nm excimer laser systems. 17

II. Vesta and the angrite parent body
3. The effects of composition on metal-silicate partitioning of siderophile elements and core formation in the angrite parent body. 37
4. Constraints on core formation in Vesta from metal-silicate partitioning of siderophile elements. .. 69
5. Significant depletion of volatile elements in asteroid Vesta due to core formation. ... 89

III. Mercury and the aubrite parent body
6. Metal-silicate partitioning systematics of siderophile elements at reducing conditions, part 1: an experimental database and predictive models. 115
7. Metal-silicate partitioning systematics of siderophile elements at reducing conditions, part 2: implications for differentiation of Mercury and the aubrite parent body. 157
8. Distribution of trace elements between sulfides, metals and silicate melts at highly reduced conditions. 187

IV. Mars
9. A synthesis of geochemical constraints on the inventory of light elements in the core of Mars. ... 219
10. Depletion of potassium and sodium in mantles of Mars, Moon and Vesta by core formation. ... 239
11. The effect of temperature on the metal-silicate partitioning of volatile siderophile elements: implication for volatile element depletions in the Moon and Mars. .. 255

12. Sulfide-silicate partitioning of halogens. 281

V. The Moon

13. New geochemical models of core formation in the Moon from metal-silicate partitioning of 15 siderophile elements. ... 299

14. Carbon as the dominant light element in the lunar core. 315

15. The lunar core can be a major reservoir for volatile element S, Se, Te and Sb. ... 327

16. A high-temperature giant impact origin of the Moon inferred from lunar core-mantle partitioning of Ni, Co and Cr. 343

17. Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements. .. 363

VI. Outlook and concluding remarks

18. Recommended sampling strategies for future robotic exploration of the terrestrial planets and planetoids. .. 401

19. Analyses of Robotic Traverses and Sample Sites in the Schrödinger basin for the HERACLES Human-Assisted Sample Return Mission Concept. ... 407

20. Synthesis. ... 431

Dutch summary. Acknowledgements. Curriculum Vitae. .. List of publications. Bibliography. .. 440