Summary

Chapter 1 provided the rationale underpinning the thesis; the application of both historical and geochemical approaches to achieve the aim of building life histories of enslaved persons at The Cape. The reader was introduced to the archives available for inquiry, namely the VOC written record and the bodies of those buried without headstones to identify them at the burial grounds of Green Point, Cape Town. At the very least the results would be additive but we believed they could provide further insights that could not be gleaned from interpreting the written or skeletal archives alone.

Chapter 2 introduced the reader to the Indian Ocean world whence The Cape’s enslaved came. This expansive geographic region was characterised by complex trade and social networks, and the periodic rise and fall of different powers when the VOC arrived on the scene to source spices for the European market. The chapter zooms in on different regions allowing the reader to compare and contrast characteristics. The historiographies of South Africa in general and the colonial Cape in particular are presented and their influence on the knowledge produced to date about Cape slavery.

Chapter 3 paints a picture of migration of enslaved persons from Asia to The Cape on Company ships. These souls mainly served two purposes for their masters and mistresses. Firstly, they acted as domestic servants on the first leg of their owners’ journey from Asia to The Cape. Secondly, their sale at The Cape, which was known for high slave prices, provided a profit for their owners. The Overgekomen Brieven en Papieren (letters and attachments sent from Batavia to the directors in The Netherlands) document these individuals’ transportation from eastern realms to The Cape. Once at The Cape many were sold to new owners as is evident from the Cape Title Deeds. This informal trade was carried out by well to do members of VOC society who used their access to money and intercontinental networks to their own benefit. Skippers and other ships’ officers functioned as middlemen in this trade and could make a pretty penny transporting and trading enslaved person on others’ behalf. It is apparent from the records that this trade had a rhythm with the bulk of transactions occurring during March. It is also apparent from the enslaved individuals’ toponyms that the majority originated and were shipped from the Indonesian Archipelago. Finally, the possible fates of those who found themselves traded at The Cape are explored in the Master of the Orphan Chamber records. A rare few could become part of free society and prosper, but alas, this was not the lot of the majority of enslaved persons at The Cape.
Addenda

Chapter 4 illustrates other ways in which life histories can be built, this time from the skeletal archive. The reader was introduced to different isotope systems that were utilised in this study to this end. The path of strontium from the environment to the human body is charted. $^{87}\text{Sr}/^{86}\text{Sr}_{\text{enamel}}$ values from different teeth are a reflection of the geological environment in which one resides and the food and water intake at the time of tooth formation. Migration events experienced by individuals can thus be identified from teeth as can possible regions of residence. The $\delta^{13}\text{C}$ of plants that follow different photosynthetic pathways differ considerably. This difference is propagated up the food chain and is reflected in the human skeleton. $\delta^{15}\text{N}$ measured in skeletal elements is mainly a reflection of dietary protein. This value is sensitive to differences in trophic level within a trophic system. Due to the systematically higher $\delta^{15}\text{N}$ values of marine organisms relative to terrestrial ones, humans who consume significant amounts of marine foods will also display relatively elevated nitrogen isotope values. By applying these techniques to different skeletal elements that develop at different times and at different rates, it is possible to piece together individuals’ life histories. Many factors may contribute to variations in isotopic values making it difficult to interpret data. Nevertheless, valuable insights can be gleaned from these and other isotope systems.

Chapter 5 presents new $^{87}\text{Sr}/^{86}\text{Sr}$ data in conjunction with reassessed published $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ data from the non-European individuals of the Cobern Street informal burial ground dating from 1750-1827. The main aim of this part of the study was to elucidate individual migration histories of these individuals using $^{87}\text{Sr}/^{86}\text{Sr}_{\text{enamel}}$, $\delta^{13}\text{C}_{\text{dentin}}$, and dental modifications as proxies. $\delta^{13}\text{C}_{\text{cancellous}}$ data led to the determination of a Cape enslaved dietary signal of -18.8‰ to -13.5‰, whilst the bioavailable data from the literature and human M1 data resulted in a $^{87}\text{Sr}/^{86}\text{Sr}$ baseline of 0.7086-0.7179. Based on these proxies, 54.5% of the individuals were identified as migrants to The Cape. Individuals whose early diets or geological residence deviated from these ranges were identified as migrants to The Cape and some individuals evidently experienced multiple migration events before arrival at the port City. Possible geographic origins are proposed for two individuals. The data suggest that enslaved men hailed from more diverse geographic origins than enslaved women, a novel finding that is not evident from written documents. A limitation of the written record is that it often only documents an individual’s migration from point of embarkation or transhipment and does not capture information on previous migrations which may coincide with being traded in indigenous slaving networks. Isotopic analyses have thus added valuable information to the study of Indian Ocean world enslaved populations.
Summary

Chapter 6 presents the life histories of individuals from the Marina Residence informal burial site on Dock Road, Cape Town, used between 1750 and 1850. Once again radiogenic and stable isotopes along with dental modification were employed to assess these histories. The Cape $\delta^{13}C$ dietary range and strontium baseline found in this study overlapped with those determined in the previous chapter, however the dietary range was half as wide for the Marina individuals. Did these individuals have access to less diverse foodstuffs? Statistically significant differences were observed between the $\delta^{13}C$ and $\delta^{15}N$ values of the Cobern Street versus the Marina Residence individuals. The Marina individuals displayed more elevated values and possible interpretations of these findings were suggested. Could it be that these individuals consumed more and/or higher trophic level marine resources? Another plausible scenario is that these individuals consumed more salted meat and/or fish. Could it be that this dietary adaption was a response to emancipation and incorporation into the working poor? Could it be that this population had been suffering from the ailments that seafaring and poverty made them susceptible to? More cause for debate rather than a neat conclusion arose from this chapter, but it is clear that together historical understanding and bioarchaeology can paint a textured picture of enslaved experiences.

Chapter 7 presents the first $\delta^{13}C$ and $\delta^{15}N$ baseline ever generated to delineate Cape colonial diet. Although the faunal remains that were analysed for this database cannot be associated with enslaved persons’ spaces, they do represent the protein sources available at the urban colonial Cape and are thus useful for comparison to human dietary data. Sheep/goat and cattle herds were managed differently from each other, with the latter probably only grazing far inland as is evidenced by their heavier dependence on C$_4$ resources. Sheep/goat herds seem to have grazed at variable distances from Cape Town. Two dogs and a cat plotted in a similar region and their diet could be interpreted as omnivorous. The pigs in the sample did not appear to have consumed an omnivorous diet as they plotted with the domestic fowl. The pigs’ and fowl’s diets seem to have been enriched in ^{15}N suggested that they may have been consuming plants subjected to seaspray and/or manuring. The average dietary data of the Cobern Street and Marina Residence individuals is compared with the faunal data and it becomes clear that many protein sources can be excluded as constituting a major contribution to the Cape slave diet. These include beef, domestic fowl and pork. Possible contributors to Cape slave diet are mutton and fish, in agreement with previous archaeological findings.
Addenda

Chapter 8 presents $^{87}\text{Sr}/^{86}\text{Sr}$ from the dental enamel of young individuals who have previously been identified as enslaved persons who died when the ship that was transporting them from Mozambique to Brazil, the *Pacquet Real*, was wrecked on the Cape coast. Analysis of the enamel of Europeans, possibly soldiers, from a nearby burial was also performed. The results suggest 7 of 16 enslaved individuals had experienced previous migration in indigenous networks prior to finding themselves at The Cape. The young ages of these enslaved individuals further suggest that the domestic Mozambican and the trans-Atlantic slave trades involved transactions of children. This is in contrast with results from chapter 3 which suggest the desired age of a slave at The Cape was 24 years.

Chapter 9 assesses the extent to which we were able to answer the questions posed at the beginning of the study and thus the soundness of the bioarchaeological-historical approach. We conclude that this multi-pronged approach, interpretation findings from the written and skeletal records, resulted in nuanced findings and a mitigation of the shortcomings of the individual approaches. It is suggested that this approach could be successfully applied to the labour migrations of the late 19th and 20th century which were sparked by the demand for cheap labour to mine diamonds and gold in South Africa.