1 **Introduction**
 1.1 Variability in Biology
 1.2 Chemotaxis in *E. coli*
 1.3 Förster Resonance Energy Transfer
 1.4 This Thesis

2 **Measuring FRET in single bacteria**
 2.1 Introduction
 2.2 Developing a single-cell FRET protocol
 2.3 Summary
 2.4 Strains and Plasmids

3 **Generation and attenuation of phenotypic diversity**
 3.1 Introduction
 3.2 Single-cell FRET reveals strong variation in signaling parameters
 3.3 Modulation of ligand response diversity during population growth
 3.4 CheB phosphorylation feedback attenuates cell-to-cell variation
 3.5 Discussion
 3.6 Materials and Methods

4 **Direct observation of temporal signaling variability in single bacteria**
 4.1 Introduction
 4.2 Results
 4.3 Discussion
 4.4 Materials and Methods

Contents

4.5 Appendix 107

5 Stochastic two-state switching in chemoreceptor activity 111
 5.1 Introduction 112
 5.2 Results 113
 5.3 Discussion 124
 5.4 Materials and Methods 127

6 The Molecular Origins of Signal Amplification 129
 6.1 Introduction 130
 6.2 The necessity of single-cell measurement techniques 132
 6.3 Cooperativity defects in single-cell ligand sensing 133
 6.4 Signalling response dynamics of chemoreceptor arrays 137
 6.5 Discussion 146
 6.6 Methods 149

References 151

Summary 169

Samenvatting 171

About the author 173

Acknowledgements 175