Abstract

Social processes play a key role in health behavior. Understanding the underlying mechanisms of such processes is important when designing health interventions with a social component. In this work, we apply a computational model of social contagion to a data set of 2,472 users of a physical activity promotion program. We compare this model’s predictions to the predictions of a simple linear model that has been derived by a regression analysis. The results show that the social contagion model performs better at describing the pattern seen in the empirical data than the linear model, indicating that some of the dynamics of the physical activity levels in the network can be explained by social contagion processes.
This chapter is based on:

Physical inactivity is a major worldwide concern, as it can lead to many long-term health risks (Conn et al., 2011; Eime et al., 2013). These risks can be reduced if an adult fulfills the requirement (according to recommendations of the WHO and other public health organizations) of at least 150 minutes of moderate or 75 minutes of vigorous intensity physical activity per week, or a combination of both (Garber et al., 2011; World Health Organization, 2010). An active lifestyle not only improves a person’s physical health, but it also has positive effects on mental health (Pate et al., 1995).

Maintaining a healthy lifestyle is a difficult task, even in this technological era in which we are surrounded by many types of gadgets that aim at supporting this. If used in innovative ways, eHealth and mHealth hold great potential to steer physical activity promotion programs in the right direction and let greater numbers of people benefit from it. However, this requires the right choices about the way in which technology is embedded in these programs. For example, simply using a wearable device alone will not suffice to achieve sustainable behavior change (Patel et al., 2015). To maintain new behavior for a longer period of time, other important ingredients are needed, e.g. evidence-based techniques such as goal setting and timely feedback, and a supportive social environment.

Social processes play a key role in health behavior. Several aspects of it are relevant for achieving a healthy lifestyle. It has been shown that people become more successful in maintaining a healthy lifestyle when they function within their social context (Wing and Jeffery, 1999; Zimmerman and Connor, 1989). In addition, the social environment enables people to compare their physical activity achievements with their peers or to seek social support from them. Within online social networks, this is commonly implemented via leader boards with achievements, building on the theory of social comparison (Suls and Wills, 1991). In (Klein et al., 2014), we investigated whether this principle can be used to explicitly change the influence of others by changing the visibility of the connections. For example, if a person is vulnerable to adopt a certain kind of negative behavior, more positive people in that person’s friendship network could be shown more prominently. Overall, in the context of health promotion programs, support for social processes can provide a leveraging mechanism to achieve and maintain a healthy lifestyle. Understanding these mechanisms is therefore important.

In this paper, we use a data set about health behavior in a social context to understand the underlying social processes. It is a continuation of earlier work on this subject (Groenewegen et al., 2012; Manzoor et al., 2016). In (Manzoor et al., 2016), a large data set of an online physical activity promotion program was used to compare the physical activity levels of people who (at some point in time) participated in an online social network with those who opted not to join the network. Ten network components were identified from the overall network and based on similar characteristics as the participants in the community data set, individuals were identified who were not part of the online community. One of the conclusions was that participants who chose to join the online community (either during the period of the collection of the analyzed data or later) had significantly higher activity levels and a higher increase in activity compared to participants who chose not to become part of the community.

In this work, we try to answer the question whether the changes in physical activity can be explained by social contagion. Social contagion can play a large role in shaping a certain kind of behavior in a social network (Christakis and Fowler, 2013). After a rigorous process
of cleaning and filtering the data, 2,472 community members were extracted for the analysis. The research question is addressed by comparing the activity data of the participants with two types of predictions: (1) based on a simple linear model that captures the effect of participating in the program for users who join the online community, and (2) based on a model of social contagion combined with the linear model. The social contagion model enables us to validate the social dynamics in terms of contagion of physical activity behavior and the linear part of the model explains the effects of the program. Mean absolute errors were calculated by comparing empirical data with the combined contagion model and the linear model. Finally, some statistical tests were conducted to show the significance of the difference between the two errors.

The remainder of this paper is structured as follows. First, Section 11.2 discusses the related work with respect to physical activity promotion programs, the role of social influence (social contagion) and the computational model of social contagion. Section 11.3 describes the methods and analyses. Section 11.4 describes the results of the analyses. Finally, Section 11.5 provides a discussion about the choices that we made during the analyses, a reflection on the results, and possible future directions.

11.2 Related work

Because a majority of the adults in the Western world does not meet the guidelines for physical activity, public health professionals are aiming at population-wide interventions. Since decades, the area of preventive medicine is investigating how people can be stimulated to be more physically active (Sallis and Owen, 1998). It has become clear that a multi-disciplinary approach is required, combining personal level mediators with concepts and perspectives from other fields, for example sociology and urban-planning (Abby C King et al., 2002). More recently, the smartphone has been discovered as tool for measuring and influencing physical activity (Bort-Roig et al., 2014). Many of these technology-mediated interventions use some kind of social influence. In an earlier review of 57 physical activity apps (Middelweerd et al., 2014), we found that 37 times some social support feature was included. In (Bort-Roig et al., 2014), social support networking was identified as one of the most useful strategies.

A specific appearance of social influence is the phenomenon of social contagion (Christakis and Fowler, 2013). It has been shown that people can influence each other via their social networks up to three degrees of distance. Although these claims have been criticized (Shalizi and Thomas, 2011), one could imagine that people transitively influence each other via social relations. In (Araújo and Treur, 2016; Bosse et al., 2015), a temporal-causal computational model is presented that describes how the mutual absorption of emotions in a social network affects the emotions of the individuals. This model was used as the basis for the study that is described in this paper. Our assumption is that physical activity behavior is influenced by internal states like motivation, attitudes and goals, and that those spread in a similar way as described in the model of emotion contagion. In earlier work, we used a similar approach to predict the contagion of physical activity in a small social network (Araújo, Tran, et al., 2015).

The model (Araújo and Treur, 2016) describes how internal state \(q_A \) of person \(A \) affects the internal states of other persons \(B_i \). This process is determined by the strength by which the state is expressed \((\varepsilon_A) \), the openness of the receiver \((\delta_B) \) and the strength of the channel
between them (α_{AB}). Together, these factors determine the connection weight ω_{AB}. Thus, the impact of the state of person A on the state of person B is:

$$\text{impact}_{AB}(t) = \omega_{AB}q_A$$ \hspace{1cm} (11.1)

The aggregated impact $\text{aggimpact}_B(t)$ at time t of the states q_{A_i} of all connected persons on state q_B is modeled as a scaled sum. From this it follows that $\text{aggimpact}_B(t)$ is calculated as a weighted average of all the impacts of the different connections of a person:

$$\text{aggimpact}_B(t) = \sum_{A_i \neq B} w_{AB}q_{A_i}(t)$$ \hspace{1cm} (11.2)

with w_{AB} chosen in such a way that it is proportional to ω_{AB} and the sum of all weights is 1. The new state for each person in the network is calculated by integrating some factor η of the aggregated impact:

$$\text{contagion_effect}(t) = \eta_A[\text{aggimpact}_B(t) - q_B(t)]$$ \hspace{1cm} (11.3)

$$q_B(t + \Delta t) = q_B(t) + \text{contagion_effect}(t)\Delta t$$ \hspace{1cm} (11.4)

For a more detailed description of the model, see (Araújo and Treur, 2016).

For the purpose of this study, we assumed that all people have the same expressiveness and openness, and that all connections were of the same strength. This was done out of necessity, as our data set does not contain specific information about these factors. The model’s parameters for openness, expressiveness and channel strength were thus set to a default value of 0.5.

11.3 Methods

This section describes how the data was collected and preprocessed, as well as what types of analyses were run.

11.3.1 Data collection

The data originates from a physical activity promotion program in which participants are asked to wear an activity monitor that measures physical activity level (PAL) using an accelerometer. Based on the activity data that is repeatedly uploaded by the participants, the program stimulates them towards a more active lifestyle by gradually increasing the weekly activity targets over a 12-week activity plan. The baseline for this activity plan is established in an initial assessment week. After completing a plan, participants can choose to take another 12-week activity plan or decide to remain at the level of their last completed plan.

After the initial assessment week, participants also get access to a dashboard with information about energy expenditure (calories burnt) and their achievements relative to a weekly goal. The program provides an opt-in online community that allows participants to establish connections and to compare achievements. Each participant in the community will see how their achievements rank compared to other participants with whom they are
connected. Community participants see the ranking within their own network each time they upload data from their activity monitor.

The network structure and some social network analyses are discussed in (Araújo, Klein, et al., 2016), showing the scale-free structure on the distribution of the degrees of the nodes and some homophily characteristics of the edges.

11.3.2 Data preprocessing

The original data set contains data for 52,788 users. Since the aim of this paper is to demonstrate the influence of social contagion on people’s physical activity levels, we are only interested in the 5,041 users who opted in for the online community of the program.

First, any participant that joined the program for testing purposes or users with missing information such as gender or body mass index (BMI) were removed from the data set, as well as participants that didn’t have a start date for their first plan. The resulting data set contains participants for whom valid physical activity data is available. The network was further pruned by removing connections that were initiated by one participant, but never confirmed by the other participant.

As the online community feature was not part of the program until April 28th 2010, all data before that date was disregarded. Community data was available until August 6th 2010, but the PAL data was incomplete for the last couple of days. This can be explained by the fact that some users did not upload their data for those days yet. Therefore, only the data up to July 28th 2010 was considered, resulting in a data selection that spanned a period of 91 days.

Within this period of 91 days, only active and connected participants were considered for the current analysis. In other words, any users who entered the program, but did not join the online community, or users that dropped out of the program before this period started, were removed from the data set. This data cleaning process leaves us with 2,472 relevant nodes in the period between April 28th 2010 and July 28th 2010.

Although the primary unit of physical activity in the data set is the PAL, users see percentages of their goal achieved rather than the PAL itself on their online dashboard. The ranking with connected users is also based on this relative performance. Therefore, our analyses are also based on the ratios of goals achieved, i.e. the current PAL divided over the target PAL.

11.3.3 Model simulations

Previous work has shown that the combination of participation in the program and willingness to join the online community is associated with a small but significant average increase in PAL (Manzoor et al., 2016). The objective of the current work was to demonstrate whether the dynamics of users’ physical activity levels can be (partially) explained by social contagion. Therefore, we compared the predictive performance of two different models: (1) a simple linear model, that describes the effect of the program on (future) members of the community; and (2) a combined model, that captures the social contagion process and incorporates the linear increase as well.

Scenario 1: Simple linear model

The simple linear model describes the effect of the physical activity promotion program on the users’ physical activity levels. Previous analyses have shown that this effect is an average
Methods

PAL increase of 0.0005821 per day (Manzoor et al., 2016). These analyses were based on a subset of users from the same data set, with all users being in their first plan and eventually member of the community (either during the period of the collection of the analyzed data or later). The increase in PAL translates to an increase in energy expenditure of 1.05 kCal for an average male with a basal metabolic rate (BMR) of 1800 kCal/day (Mifflin et al., 1990).

To translate this increase in PAL to the unit predicted by the model (i.e., the goal achieved), the simple linear model adds a daily increase of 0.0005821 divided by the current target PAL to the user’s goal achieved, as shown in Equation 11.5 and Equation 11.6.

$$linear_effect(t) = \frac{0.0005821}{target_pal(t)}$$ (11.5)

$$goal_achieved(t + \Delta t) = goal_achieved(t) + linear_effect(t)$$ (11.6)

Scenario 2: Combined social contagion model

The combined social contagion model describes the linear increase in PAL as well, but combines it with the model of social contagion that captures the dynamics between the nodes in the network, as summarized in Equation 11.7, where $contagion_effect(t)$ denotes the social contagion effect as described in Section 11.2, Equation 11.3. In this case, the state q represents the percentage of goal achieved. By enriching the social contagion model with the daily increase in PAL (as in the simple linear model), we account for the demonstrated stimulating effect of the program and the community, and thereby nullify a possible disadvantage on the social contagion model.

$$goal_achieved(t + \Delta t) = goal_achieved(t) + contagion_effect(t) + linear_effect(t)$$ (11.7)

As mentioned in Section 11.3.2, the analyses were based on the predictions of the goal achieved, i.e. the proportion of the target PAL achieved by the user, rather than the user’s current PAL. Additionally, the model predictions were done for users in their first plan. Of the 2,472 relevant users identified in Section 11.3.2 1,939 were participating in their first plan for at least part of the time period under consideration. The reason behind this choice is that users in their first plan are most comparable to the general population: they have just entered the program, and therefore have no prior knowledge of or experience with the plans or other parts of the intervention. Also, it is likely that people in their first plan have the highest adherence rates and interact more with the program, which makes them a more interesting population as well. However, users who have not yet started or already completed their first plan can still influence users in their first plan through social contagion. Therefore, they are considered by the social contagion model, but only as input of the contagion process towards the users under consideration (i.e., users in their first plan).

To run the models, the initial values have to be determined. For all users for whom a target PAL is not available (i.e., users who are in their assessment week and have yet to start their first plan), the initial goal achieved value was based on the average PAL of their assessment week and their first target PAL. For all users with a target PAL, the initial goal achieved was calculated by dividing the average PAL for one week before the start date of the simulations (i.e., April 28th 2010) by the current target PAL. If for some reason, no data
was available for that week, the initial goal achieved was based on the average PAL in the
month prior to the start date of the simulations. This decision sequence is summarized in
Figure 11.1.

- If user has not started first plan yet:
 - Average PAL in assessment week and first target PAL of first plan.
- Else (i.e., if user has already started and/or completed first plan):
 - If data is available in 7 days before start date of simulation:
 * Average PAL in 7 days before simulation start date and target
 PAL of simulation start date.
 - Else (i.e., if no data is available in 7 days before start date of
 simulation):
 * Average PAL in 30 days before simulation start date and target
 PAL of simulation start date.

Figure 11.1: Data used to calculate initial goal achieved values for different cases.

In the social contagion model, we used the initial goal achieved values of the simulated
nodes as described above, and the empirical data from the surrounding nodes as input to
the contagion process. This choice was motivated by the fact that we were only interested
in simulating the effect of the behavior of users on users in their first plan, rather than
simulating the behavior of those other users as well.

11.3.4 Analyses
To evaluate the accuracy of the two models, we first calculated their average predictions for
the approximately 1,939 users in their first plan in the data set, as well as the average goal
achieved values based on the empirical data. Based on these values, we tested whether there
is a significant difference in the magnitude of the errors of the two models with a Mann
Whitney U test. In addition, we determined the correlations of both models’ predictions to
the empirical data by means of Mann Kendall tests.

11.4 Results
As explained in Section 11.3.2, after thorough preprocessing of the data, 2,472 relevant
users remained in the period between April 28th 2010 and July 28th 2010. Figure 11.2 shows
their empirical data over the 91 days in the data set.

Following the procedures described in Section 11.3.3, the two models were run on the
initial data. Figure 11.3 provides an impression of the predicted goal achieved values for the
1,939 users in their first plan by the two models. The simulation of the linear model shows a
steady increase in the goal achieved. The combined model shows the effect of the contagion
between the users, in combination with the steady increase. Any interruptions of the lines in
either plot are caused by users entering the program or community, or by users dropping out
of the program.

After averaging the model predictions, as well as the empirical data, for all users in their
first plan per day, the graph in Figure 11.4 was obtained. It shows the average predictions
of the linear model (green) and the combined model (blue), and the empirical data (red). The sharp troughs in the empirical data mark the Sundays, when physical activity levels on average are substantially lower.

Figure 11.4 already gives the impression that the combined model is much closer to the empirical data than the linear model. Indeed, the mean absolute error (MAE) of the linear model is 0.02212, whereas the mean absolute error of the combined model is 0.01321. A Mann-Whitney U test shows that the difference between the errors of the two models is significant, \(p < .001 \).

Besides comparing the size of the errors, we also investigated whether the predicted lines were correlated with the empirical data. A Mann-Kendall test shows that the linear model is significantly correlated with the empirical data, although negatively (\(\tau = -0.46227 \),
Chapter 11. Explaining changes in physical activity through social contagion

Figure 11.4: Average predictions of the two models (green: linear, blue: combined), and the empirical data (red).

$p < .001$). The combined model is also significantly correlated, but in this case positively ($\tau = 0.53895, p < .001$).

Table 11.1: Model evaluations.

<table>
<thead>
<tr>
<th></th>
<th>Absolute error</th>
<th>Kendall’s correlation test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>St. dev</td>
</tr>
<tr>
<td>Linear model</td>
<td>0.02212</td>
<td>0.01378</td>
</tr>
<tr>
<td>Combined model</td>
<td>0.01321</td>
<td>0.00855</td>
</tr>
</tbody>
</table>

11.5 Conclusions

The results described in Section 11.4 show that the combined model, which integrates the social contagion model with a steady linear increase in PAL, is indeed better able to capture the dynamics of the physical activity levels in our data set than the linear model. Its predictions show a significant positive correlation with the empirical data. Additionally, the errors of the combined model’s predictions are significantly smaller than those of the linear model.

One of the main strengths of this work is its foundation on a large set of empirical
11.5 Conclusions

data covering several months. Careful and extensive preprocessing of the empirical data was conducted to ensure data that is sensible for the simulated models. For example, we dynamically removed connections to users who practically dropped out of the program (but were still in the system), to prevent their (missing) data from affecting the results.

Another strength of our work is that we compared the performance of the model we were mainly interested in (i.e., the combined model of social contagion and linear increase) to an informed linear model. That way, we do not impose a disadvantage on the baseline model, thus increasing the chances of superiority of our more complex model. However, it is interesting to see that the empirical data shows a development that is actually opposite to the direction of the linear increase model. There are a few possible explanations for this observation. An evident first possible reason is that the current data analysis is based on actual community members in their first plan, whereas the linear model is based on participants who become member of the online community at some point in time, but they might have still been unconnected during their first plan. Therefore, even though the linear model is informed by the data, it is actually not as well informed as it could be. Plans for future research include replicating the analyses in (Manzoor et al., 2016) with actual community members, and investigating whether that leads to a different linear model and thereby possibly different performances of the two models applied in the current analyses. Another possible explanation could be that the linear increase was found after aligning the data by the day in the program rather than the calendar date. Possibly, we would see the same average increase if we aligned our selection of the data set in the same way. The pattern in the current data set is then caused by users in different phases of the first plan entering and leaving the program over time (e.g., because their first plan is finished halfway the period that we selected). A third possible reason for the unexpected observation is that the linear model describes an increase in PAL, whereas it is transformed and applied to the progress towards the target PAL in this work.

One of the limitations of this work is its restricted generalizability. As all analyses were based on data collected in the context of a physical activity promotion program (see also Section 11.3.1), the results cannot directly be transferred to the general population. However, by choosing to focus on people who are exposed to the program for the first time, we have tried to minimize that discrepancy.

Another limitation is that the social contagion model only considers the online community as the network through which the behavior spreads, although contagion also takes place on different levels and in different contexts. Additionally, we did not take into account whose data is actually shown on the user’s dashboard: all connections were treated equally, whereas the performance of friends may not be shown on the dashboard when the difference was too big (e.g., more than 10 position difference). Future work could reveal whether limiting the contagion model to only the connected users who are visible on the dashboard improves the performance of the model. A further limitation is that we used default values of 0.5 for the parameters (for expressiveness, channel strength and openness) in the combined model. In future work, we could investigate whether using calibrated values would yield better results. It is also possible to experiment with models that incorporate the principle of non-linearity in behavior change, e.g. by exploiting thresholds for effects (Giabbanelli et al., 2012).

Up to our knowledge, we present the first analysis of the ability of a computational model of social contagion to capture the pattern of physical activity levels in a community
over time. In order to do so, we compared model predictions of such a contagion model (enriched with an expected linear increase) and of a simple linear model to a dataset of 2,472 interconnected users. The results show that the enriched social contagion model performs better at describing the pattern seen in the empirical data than the linear model, indicating that some of the dynamics of the physical activity levels in the network can be explained by social contagion processes. This is vital information for designers of health interventions with a social component, as such models can then be used to maximize the benefits of social influence processes.
References

King, Abby C, Dan Stokols, Emily Talen, Glenn S Brassington, and Richard Killingsworth (2002). “Theoretical approaches to the promotion of physical activity: forging a trans-

Shalizi, Cosma Rohilla and Andrew C. Thomas (2011). “Homophily and contagion are generically confounded in observational social network studies”. In: *Sociological methods & research* 40.2, pages 211–239.

