CHAPTER 4

DISCUSSION & SUMMARY
Genetic Heterogeneity in Hypomyelinating Leukodystrophies

Hypomyelinating leukodystrophies are a heterogeneous group of diseases with a broad differential diagnosis. With non-specific neurological signs such as developmental delay, ataxia, pyramidal signs and progressive motor deterioration, it may be challenging to achieve a definitive final diagnosis. MRI not only provides important tools to separate hypomyelination from other leukodystrophies, it can also direct the genetic diagnosis of hypomyelination and can be utilized beyond its main function as a diagnostic tool.

Since the description of POLR3A, POLR3B and POLR1C as the responsible genes only some years ago,1-5 4H leukodystrophy emerged as the second most common hypomyelinating leukodystrophy.6 However, Chapter 2.1 describes that the mutations in POLR3A and POLR3B are rarely found in patients with unclassified hypomyelination. As POLR1C was not known as a gene for 4H leukodystrophy at that time, we might have underestimated the presence of POLR1C mutations in this cohort. Follow-up with whole exome sequencing (WES) revealed no POLR1C mutations and resulted in another diagnosis in 12 of the 22 patients: three patients with TUBB4A mutations leading to hypomyelination with atrophy of basal ganglia and cerebellum (H-ABC) without basal ganglia changes, one with hypomyelination of early myelinating structure (HEMS), one with hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL), two with Salla disease, three with RARS-associated hypomyelination, one with mutations in GJB1 and one with mutations in a novel hypomyelinating leukodystrophy gene (TMEM106B).7

Recent articles confirm the clinical heterogeneity of hypomyelination.8-13 Application of WES in 26 infants classified as having hypomyelinating leukodystrophy resulted in diagnosis of 35% of patients after 8 patients had been screened out by chromosomal analysis, CGH array and targeted sequencing of certain genes (PLP1, GJC2, MBP, TREX1).12 However, based on available MR images of the patients, the inclusion criteria were applied incorrectly, resulting in an erroneous diagnosis of hypomyelination of
some patients. Similar to our cohort, two patients had TUBB4A mutations (one of them with typical MRI abnormalities) and only one patient had POLR3B mutations. Clinically, the patient with POLR3B mutations in our cohort had severe myopia and hypogonadism, features which could have led to the diagnosis of 4H leukodystrophy on clinical grounds already. In spite of these shortcomings, this study reinforces our impression that, even after application of whole-exome sequencing (WES), mutations in POLR3-related genes remain rare in unclassified hypomyelination with neither typical clinical nor MRI characteristics, underlining the important role of thorough MRI analysis and clinical assessment.

MRI in hypomyelinating leukodystrophies: Recent insights

Clinical severity in 4H leukodystrophy is strikingly variable, ranging from subclinical ataxia to severe motoric handicap, which makes monitoring clinical progression difficult. MRI is not only valuable for diagnosis but also for assessing severity of white matter abnormalities; therefore we wondered whether this would also apply to hypomyelinating leukodystrophies. **Chapter 2.2** provides a novel rating scale for 4H leukodystrophy, reflecting both hypomyelination and atrophy. The scale (for both hypomyelination and atrophy) correlates well with motor handicap, making it indeed valuable for clinical use. The main advantage of our 4H leukodystrophy scoring system compared to other scoring systems for leukodystrophies is the more accurate measurement of cerebral atrophy by using an age-adjusted bicaudate ratio (BCR) and brainstem diameter. Another advantage is that the scoring system was designed for conventional T1W and T2W MR images, usually available from standard MR imaging, making it possible to use it also for retrospective studies.

Advanced MRI provides additional modalities to assess myelin such as proton magnetic resonance spectroscopy (MRS), myelin water fraction (MWF) from quantitative T1 and T2, magnetization transfer imaging (MTI) or diffusion tensor imaging (DTI) with all their advantages and limitations. Currently, MWF and radial diffusivity (RD) from DTI are
the most promising parameters to evaluate myelin. MWF has strong correlation with myelin based on histological assessment irrespective of inflammation or water content changes20,21 while RD is the most sensitive DTI parameters and correlates well with motor handicap for several hypomyelinating leukodystrophy.22 In the future, MRI analysis combining basic and advanced MRI will also be beneficial as monitoring tool for clinical trials.

The advancement of MRI techniques provides, among others, higher resolution, especially with high field strengths. Chapter 2.3 demonstrates findings at 3T MRI in 4H leukodystrophy, revealing novel MRI characteristics not perceptible with lower field strength imaging. Multiple myelin islets, closed-eye sign, a small cyst-like lesion of the splenium and hypomyelination of the spinal cord were well visible on T2W MR images acquired at 3T whereas they were barely visible on 1,5T MR images. Especially the presence of myelin islets is interesting, as it suggests that, even in the hypomyelinated 4H brain, some cells have kept their myelinating potential, which might be exploited in treatment approaches.

Phenotypic variability in 4H leukodystrophy

In contrast to the largest study to date, describing 105 patients with 4H leukodystrophy who all had diffuse hypomyelination,23 our study in Chapter 2.4 reveals that diffuse hypomyelination is not obligatory for POLR3 leukodystrophy. Eight patients neither of whom had typical hypomyelination were diagnosed with mutations in \textit{POLR3A} or \textit{POLR3B}. Five patients did have partial hypomyelination whereas three had normal myelination. There were two pertinent MRI findings: selective involvement of corticospinal tracts particularly evident at the level of PLIC as T2 hyperintensity, present only in \textit{POLR3A} patients, and moderate to severe cerebellar atrophy with non-specific T2 hyperintensity of the supratentorial white matter in both \textit{POLR3A} and \textit{POLR3B} patients. In the meantime, we identified four more patients with only cerebellar atrophy on MRI in the Netherlands, all with biallelic mutations in \textit{POLR3B}.
This makes mutations in POLR3-related genes an important differential diagnosis also for disorders from the spectrum of spinocerebellar ataxias.

The broadening clinical spectrum with possibly a specific phenotype-genotype relation in patients with POLR3-genes mutations is also illustrated by recent studies. Biallelic truncating mutations in POLR3A were associated with a severe phenotype, a rare neonatal progeroid syndrome called Wiedemann-Rautenstrauch syndrome (WRS), although we wonder whether the intronic mutation leading to false splicing, c.1909+18G>A; p.(Y637Cfs*23), really leads to complete absence of POLR3A or rather allows expression of a low amount of wildtype protein. Compound heterozygous mutations in POLR3A, specifically C.1909+22G>A in one of the alleles, causing activation of a new cryptic splice site and consequently reduction of total POLR3A mRNA level in cells, were ascertained in adolescent-onset progressive spastic ataxia without hypomyelination. Interestingly, dental abnormalities were frequent (65%) in these patients. Similarly, heterozygous POLR3B mutations were identified in patients with isolated hypogonadotropic hypogonadism (IHH) without neurological or dental anomalies. Polymicrogyria and cataract were described in two siblings with POLR3B mutations. POLR3B mutations were also identified in 2 patients with an overlapping phenotype of 4H leukodystrophy with cerebellar atrophy (described as cerebellar hypoplasia) with endosteal sclerosis (CHES), which is a variant of 4H syndrome. Recently, heterozygous missense mutations of POLR3A and/or POLR3C were found in four patients with severe varicella zoster infection, suggesting a role in immune response for POLR3.

Mutations in POLR1C (and also POLR1D) had earlier been identified in patients with Treacher-Collins syndrome (TCS), characterized by mandibular dysostosis, facial bone hypoplasia and cleft palate caused by abnormal growth of structures derived from the
first and second branchial arch. Mutations in POLR1A were implied in another dysmorphsy syndrome, acrofacial dysostosis. POLR1C, POLR1D and POLR1A all encode subunits of RNA polymerase 1 (POLR1); the proteins encoded by POLR1C and POLR1D are also shared by POLR3. POLR1C mutations leading to TCS presumably impair POLR1 function whereas POLR1C mutations leading to 4H leukodystrophy only impair assembly and nuclear import of POLR3 while loss of function mutations in both POLR1C and POLR1D disturb the neural crest cell (NCC)-derived structures development in zebra fish. Interestingly, homozygous mutations of POLR1A (and in another gene, OSBPL11, the significance of which is unknown) were recently identified in two brothers with ataxia, psychomotor retardation and leukodystrophy with cerebellar atrophy, further complicating our understanding of these entities.

Even with these broadening phenotypes, targeted genetic testing for POLR3 genes for 4H leukodystrophy remains recommended for patients with typical MRI features, also without additional extraneurological abnormalities, and also for patients without hypomyelination, but with neurological signs (especially ataxia) in combination with dental abnormalities, hypogonadotropic hypogonadism, high myopia or short stature. On the other hand, in hypomyelination without typical MRI features and other extraneurological features of 4H leukodystrophy, non-targeted genetic testing such as WES or gene panels for leukodystrophies is recommended.

In vitro Model for Hypomyelinating Leukodystrophies

Certain hypomyelinating leukodystrophies have typical involvement of other organs, which may provide clues for diagnosis as demonstrated by 4H leukodystrophy. The unique combination of brain abnormalities with hypodontia and hypogonadotropic hypogonadism led to identification of a group of patients with similar phenotype and allowed the identification of the underlying genetic abnormalities.
A similar approach was applied in detecting the genetic cause of another hypomyelinating leukodystrophy in Chapter 3.1. We identified the largest patient number to date of a disease previously only described in one family. Because of the pertinent bone abnormalities, we called this entity “Hypomyelination with Spondylometaphyseal Dysplasia (H-SMD)” and ascertained mutations in the responsible gene, *AIFM1*. At the same time, two families with a similar phenotype were associated to *AIFM1* based on *in-silico* analysis without further functional studies. Mutations in *AIFM1* were previously associated with very different phenotypes ranging from axonal sensory neuropathy with deafness and mental retardation (Cowchock syndrome) and pure auditory neuropathy spectrum disorders to a severe x-linked mitochondrial encephalopathy. As depicted in figure 1, the mutations that we found in H-SMD were point mutations clustered together within a 70-nt region flanking the exon 7 acceptor splice site while mutations leading to other diseases were spread throughout the gene. The H-SMD mutations we found were missense, synonymous and intronic mutations, which, based on *in-silico*

![Figure 1](image-url)
Figure 1. Illustration of the *AIFM1* gene with known diseases with their mutations and novel mutations related to H-SMD (black box). Modified from Zong, L. et al. [41]
Discussion & Summary

analysis, were not predicted pathogenic (in the case of the 3 missense mutations) neither did they influence splicing.

With our in vitro model using osteoblasts derived from patients’ fibroblasts in order to reproduce one of the affected tissues (bone), we were able to show that AIFM1 protein was significantly lower in patient-derived osteoblasts. There was also tissue-specific expression (in osteoblasts, but not in fibroblasts), which may explain why only specific organs are affected. Still, we have not yet understood the tight genotype-phenotype relationship in this disease giving rise to such a varying spectrum of disorders. It will be interesting to investigate the expression of the AIFM1 protein in other cell types in affected tissues such as oligodendrocytes. In conclusion, Chapter 3.1 describes a novel hypomyelinating leukodystrophy with the associated gene as well as the significance of suitable in vitro models to validate mutations with regard to tissue-specific expression of genes.

The similarities of bone and tooth tissue inspired us to investigate the possibility of involvement of tooth-related cells such as osteoblasts. We attempted to transdifferentiate fibroblast cell lines from patients with 4H leukodystrophy to odontoblasts. Unfortunately, we could not detect odontoblast markers such as dentine phosphoprotein (DPP), dentin sialoprotein (DSP) and dentin sialophosphoprotein (DSPP) in transdifferentiated cells.

We also hypothesized that osteoclasts might play an important role in the dentition abnormalities of 4H patients. Osteoclasts, which are derived from the monocyte/macrophage lineage of hematopoietic stem cells, are multinucleated giant cells working in harmony with osteoblasts in bone growth and remodeling. Osteoclasts are essential in alveolar bone resorption to allow tooth eruption. Osteopetrotic rodents, with reduced bone resorption caused by fewer osteoclasts, often suffer from failure of tooth eruption. Due to these insights and the fact that a few 4H leukodystrophy patients have a mild form of osteosclerosis, we wondered whether impaired osteoclast function could explain the dental phenotype. However, to
date, protocols for differentiation of osteoclasts from human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) are limited,49 and we were unsuccessful to replicate both published protocols.50,51 This might be due to our use of feeder-free cultures while both protocols used mouse fibroblasts as feeder cells to maintain the stem cells. As described previously, the variability of the feeder cells might affect the pluripotency and differentiation capability of the stem cells mainly iPSCs.52 Furthermore, we tried different experimental approaches to differentiate macrophages from recent protocols, which use feeder-free iPSCs cultures.53 We were able to create CD14 positive macrophages (Figure 2) from ESCs, but were unable to differentiate these to osteoclasts.

\textbf{Figure 2.} Immunofluoroscence staining of differentiated macrophages from human iPSCs with positive staining of CD14+ (green) and counterstain with DAPI (blue).

The importance of an appropriate \textit{in vitro} model with osteoblast-like cells to study the bone phenotype in H-SMD was described in \textbf{Chapter 3.2}. We used a special approach, direct transdifferentiation from skin-derived fibroblasts to osteoblast-like cells as one of main cells in bone tissue. Transdifferentiation techniques were introduced in 1987 by conversion of fibroblasts to myoblasts.54 With increasing recognition of determinants of cell fate differentiation, induction with lineage-specific transcription factors instead of pluripotency transcription factors produced fast and highly efficient
cell-specific models. Hitherto, transdifferentiation from fibroblasts to other cell types such as hepatocytes\(^5\), corneal limb epithelial cells\(^6\), neurons\(^7\) and cardiomyocytes\(^8,9\) have been successfully performed.

RNA-seq performed in our transdifferentiated cells also showed significant upregulation of IGF, WNT and BMP pathway components, specifically of \textit{IGF1}, \textit{IGF2}, \textit{WNT2}, \textit{WNT11} and \textit{BMP4}. Although it was already known that these three pathways are known to be upregulated in osteogenic differentiation\(^6\), our result narrows down specific components important for the transdifferentiation. This finding offers the possibility to target specific pathways to obtain pure populations of one type of transdifferentiated cells, without genetic alteration, using a non-gene integrating approach, cell membrane permeable proteins or small molecule compounds\(^10,11\) and may even be used for \textit{in vivo} transdifferentiation in the future to aid tissue regeneration purposes.

Another way to generate specific cell types from patient skin-derived fibroblasts is via iPSCs. Yamanaka introduced the use of pluripotent factors to revert adult cells back to pluripotency state which facilitated the generation of suitable cell types\(^12\) that can be used for studies on disease pathogenesis or for \textit{in vitro} personalized drug screening to find new and specific treatments.\(^13\) However, several limitations in this approach make transdifferentiation an interesting alternative in certain situations. iPSCs require genetic reprogramming through viral transfections of the genome, which raises the question about safety and stability of the genetic properties while the transdifferentiation approach maintains the original genetic profile of the cell.\(^14\) In addition, our transdifferentiation model is a highly efficient system, which needs a relatively short timeframe in comparison to iPSCs, which require dedifferentiation to stem cell stage before differentiation to the relevant tissue. Thus, transdifferentiation can be a time efficient and less resource-demanding alternative to iPSCs for both functional analysis and personalized drug screening.
iPSCs, and transdifferentiated cells as their alternative, can also be used *in vivo* for cell-replacement therapy. Cell-replacement therapy, involving transplantation of certain cell types, requires xenogenic-free culture protocols, which can be resolved by using transdifferentiation techniques, to minimize potential adverse effects. Another concern of iPSC transplantation is their potentially higher risk of neoplasm (including teratoma) formation. On the other hand, *in vivo* transplantation of transdifferentiated cells, performed in rats and mice was shown to be safe from tumor formation. Still, further studies are needed to ascertain the safety in humans.

In conclusion, transdifferentiation of dermal human fibroblasts to osteoblasts provides a suitable *in vitro* model to investigate genetic diseases with bone involvement such as H-SMD (Chapter 3.1) or fibrodysplasia ossificans progressiva (FOP) or primary bone diseases such as osteoporosis imperfecta (OI). In the future, this method might be applied not only for exploring possible treatments, but also for cell-replacement therapy.
Future directions

Our studies provided additional information on MRI in 4H leukodystrophy, the most common hypomyelinating leukodystrophy after Pelizaeus-Merzbacher disease. An MRI scoring system with integrating quantitative MRI parameters will provide a useful tool to monitor future therapeutic studies. In addition, we now have identified patients with POLR3-related disorders without hypomyelination at imaging. The broad application of next generation sequencing techniques will, without doubt, further broaden the spectrum of this disorder and hopefully also give a better insight into possible genotype-phenotype relationships. The application of more advanced MR imaging will also provide more detailed characteristics in hypomyelinating leukodystrophies.

In vitro models using manipulated human cells to mimic the affected tissues will become more and more important for genetic disorders, also including hypomyelinating leukodystrophies. Given the unique involvements in tooth and bone are very striking in 4H leukodystrophy and H-SMD, future functional studies should also focus on these tissues. We expect to gain essential insights into the pathomechanisms of these disorders by not only focusing on the CNS. *In vitro* models may also be manipulated with new techniques such as CRISPR-Cas9 to generate different affected cell types with specific mutations, which will be invaluable when mouse models fail to demonstrate the phenotype present in humans as is the case for 4H leukodystrophy.⁷⁰ All the approaches either *in vitro* model or gene editing techniques will hopefully bring choices of personalized treatment for the patients.
References

49. Chen I-P. The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs) to Identify Osteoclast Defects in Rare Genetic Bone Disorders. J Clin Med 2014;3:1490-1510
4

Discussion & Summary

52. Pruksananonda K, Rungsiwiwut R. Moving toward Xeno-free Culture of Human Pluripotent Stem Cells. In: Pluripotent Stem Cells - From the Bench to the Clinic. InTech; 2016.

63. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-676

64. Hunsberger JG, Efthymiou AG, Malik N, et al. Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System. Stem Cells Dev 2015;24:1852-1864

66. Cieślar-Pobuda A, Knoflach V, Ringh M V., et al. Transdifferentiation and

Summary

Hypomyelinating leukodystrophies are a group of diseases with large variability in their genetic background, less so in their clinical and radiological features. MRI pattern recognition and advances in genetic testing are now able to classify most hypomyelinating leukodystrophies. However, the phenotypic differences can be considerable even in a single hypomyelinating leukodystrophy, such as 4H syndrome. This thesis explores the radiological and genetic differences of hypomyelinating leukodystrophies, particularly 4H leukodystrophy, as described in Chapter 2, and describes a novel intriguing hypomyelinating leukodystrophy with unique involvement of bone tissue (hypomyelination with spondylometaphyseal dysplasia, H-SMD) in Chapter 3. It also validates an in vitro model of direct transdifferentiation of fibroblasts to osteoblast-like cells to investigate bone involvement.

MRI in hypomyelination leukodystrophies

Chapter 2.1 describes the importance of pattern recognition in 4H leukodystrophy. Without typical 4H leukodystrophy MRI findings, direct genetic testing of POLR3 genes is not recommended. Instead, alternative diagnoses of other hypomyelinating leukodystrophies and utilization of whole exome sequencing (WES) should be considered. Chapter 2.2 explores the utilization of MRI not only as diagnostic tool, but also as a tool correlating to clinical disease severity. This MRI scoring system, based on the degree of hypomyelination and atrophy in 4H leukodystrophy, can be simply applied for future studies such as to monitor diseases progression in clinical trials or be adapted as biomarker for other hypomyelinating leukodystrophies.

Chapter 2.3 provides new MRI features of 4H leukodystrophy which are clearly visible on 3T MRI: myelin islets, closed eye sign and cyst-like lesion in the splenium. On the other hand, diffuse hypomyelination is no longer an obligatory MRI feature for 4H leukodystrophy as described in Chapter 2.4. Six patients with POLR3A mutations and two patients with POLR3B mutations all had either partial hypomyelination or
adequate myelination, but two distinct patterns: specific involvement of corticospinal tracts in four out of six patients with *POLR3A* mutations and cerebellar atrophy in absence of diffuse hypomyelination in patients with either *POLR3A* or *POLR3B* mutations. Other classical clinical criteria – hypodontia and hypogonadotropic hypogonadism – may still suggest the correct diagnosis, even when the cardinal MRI features are lacking.

Bone involvement in hypomyelinating leukodystrophies

Chapter 3.1 explores the non-neurological involvement in a unique hypomyelination leukodystrophy, H-SMD. Diffuse hypomyelination accompanied by bone abnormalities, spondylometaphyseal dysplasia, in a group of 12 patients led to identification of mutations in or near exon 7 of the *AIFM1* gene, within a region of 70 base pairs. When analyzing WES data, these mutations were initially overlooked as some of them were intronic or synonymous, and also because *AIFM1* mutations were previously associated with other distinct clinical presentations without bone abnormalities. By using an *in vitro* model, which mimics the involved tissue, the effect of the mutations, namely a reduced expression of *AIFM1* on mRNA and protein level only in osteoblasts without affecting the fibroblasts, could be confirmed although the specific mechanism still needs to be elucidated.

An *in vitro* model applied for H-SMD was validated in **Chapter 3.2**. Highly efficient platelet lysate-based transdifferentiation of skin-derived fibroblasts to osteoblasts-like cells was characterized on functional, protein and mRNA level. Positive staining of mineralization assays, positive immunofluorescence staining of osteoblast-specific proteins and significantly increased mRNA expression of osteoblast-specific markers confirmed the properties of transdifferentiated osteoblasts. RNA-seq supported the successful transdifferentiation by clustering transdifferentiated cells separately from fibroblasts and showed significant upregulation of two important pathways in bone differentiation involving WNT and BMP.