A nutritional approach to ameliorate altered phospholipid metabolism in Alzheimer's disease
A nutritional approach to ameliorate altered phospholipid metabolism in Alzheimer's disease

Tobias Hartmanna, Nick van Wijkb, Richard J. Wurtmanc, Marcel G.M. Olde Rikkertd, John W.C. Sijbenb, Hilkka Soininene, Bruno Vellasf, Philip Scheltensg

aDepartment of Neurodegeneration and Neurobiology, Deutsches Institut für Demenzprävention, Saarland University, Homburg, Germany
bNutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, the Netherlands
cDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
dRadboud Alzheimer Center, Department of Geriatric Medicine, Radboud University Hospital, Nijmegen, the Netherlands
eDepartment of Neurology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
fDepartment of Internal and Geriatrics Medicine, Hôpitaux de Toulouse, Toulouse, France
gAlzheimer Center and Department of Neurology, VU University Medical Center, Amsterdam, the Netherlands

Reprinted with permission from IOS Press

Original publication is distributed under the terms of the Creative Commons Attribution NonCommercial License
Abstract

Recently, a biomarker panel of 10 plasma lipids, including 8 phosphatidylcholine species, was identified that could predict phenoconversion from cognitive normal aged adults to amnestic mild cognitive impairment or Alzheimer’s disease (AD) within 2–3 years with >90% accuracy. The reduced levels of these plasma phospholipids could reflect altered phospholipid metabolism in the brain and periphery. We show that a 24-week nutritional intervention in drug-naïve patients with very mild to mild AD significantly increased 5 of the 7 measured biomarker phosphatidylcholine species. By providing nutrients which normally rate-limit phospholipid synthesis, this nutritional intervention could be useful in asymptomatic subjects with a plasma lipid biomarker profile prognostic of AD.
Chapter 10

Introduction

Mapstone et al. (2014) recently identified and validated a set of 10 plasma lipids that could predict phenoconversion to either amnestic mild cognitive impairment (aMCI) or Alzheimer’s disease (AD). This 10 biomarker panel encompassed 8 phosphatidylcholine (PC) and 2 other molecules. Levels of these compounds were reduced in the plasma of the converter subjects (before conversion) compared to the non-convertors (normal control group). These metabolites remained low after conversion to aMCI/AD and were similar to the levels in the group with aMCI/AD at inclusion.

As the authors indicated, the identified lipids have essential roles in the integrity and functionality of neuronal membranes, including synaptic membranes. The synapse loss and dysfunction characteristic of AD have been linked to the degeneration of neuronal membranes and increased breakdown of membrane phospholipids (Nitsch et al. 1992, Pettegrew et al. 2001, Prasad et al. 1998). Mapstone et al. (2014) postulated that the observed changes in plasma phospholipid levels reflect the breakdown of neuronal membranes among individuals who convert within 3 years to aMCI/AD, and mark the preclinical transition to subtle cognitive changes. Several other recent studies have demonstrated reduced plasma levels of several PC species in AD and MCI subjects (Gonzalez-Dominguez et al. 2014, Oresic et al. 2011, Whiley et al. 2014), including some of the PCs identified by Mapstone et al., indicating altered phospholipid metabolism in AD. Whether the changes in plasma PCs concentration directly originate from disturbed PC metabolism in the brain, or are caused by disturbed PC metabolism in peripheral organs (e.g., liver) remains to be elucidated.

Our findings

We previously tested, in drug-naïve patients with very mild to mild AD (Scheltens et al. 2012), the nutritional intervention Souvenaid® (125 mL, taken once daily) containing the specific nutrient combination Fortasyn® Connect in a 24-week, randomized, controlled, double-blind, parallel-group, multi-country trial. This nutrient combination was designed to enhance the formation and function of synaptic membranes and comprises uridine monophosphate (UMP, 625 mg), the long-chain omega-3 polyunsaturated fatty acids docosahexaenoic acid (DHA, 1200 mg) and eicosapentaenoic acid (EPA, 300 mg), choline (400 mg), phospholipids (106 mg), folic acid (400 µg), vitamin B12 (3 µg), vitamin B6 (1 mg), vitamin C (80 mg), vitamin E (40 mg), and selenium (60 µg) (Scheltens et al. 2012). In
the present study, some baseline and 24-week plasma samples, chosen at random, of subjects taking either the investigational product (n=47) or a control product (n=49) were analyzed for lipid profiles at the Kansas Lipidomics Research Center using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Phospholipid concentrations were compared between intervention groups at 24 weeks whilst controlling for baseline values by using an analysis of covariance (ANCOVA) model. Five of the 7 measured PCs reported by Mapstone et al. (2014), were significantly increased following the 24-week treatment with the nutrient combination (see table 1).

Table 1 Plasma concentration of specific phosphatidylcholine (PC) species.

<table>
<thead>
<tr>
<th></th>
<th>Control product (n=49)</th>
<th>Investigational product (n=47)</th>
<th>ANCOVA (control vs. investigational product)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>24-week</td>
<td>Baseline</td>
</tr>
<tr>
<td>PC aa C36:6, µM</td>
<td>1.45±0.77</td>
<td>1.22±0.69</td>
<td>1.62±0.71</td>
</tr>
<tr>
<td>PC aa C38:0, µM</td>
<td>5.12±2.20</td>
<td>3.78±1.73</td>
<td>4.89±1.93</td>
</tr>
<tr>
<td>PC aa C38:6, µM</td>
<td>63.91±24.94</td>
<td>70.53±31.52</td>
<td>70.71±23.97</td>
</tr>
<tr>
<td>PC aa C40:2, µM</td>
<td>2.45±1.68</td>
<td>1.37±1.21</td>
<td>2.55±1.42</td>
</tr>
<tr>
<td>PC aa C40:6, µM</td>
<td>23.05±9.61</td>
<td>25.66±11.84</td>
<td>26.84±9.57</td>
</tr>
<tr>
<td>PC ae C40:6, µM</td>
<td>4.37±1.43</td>
<td>4.48±1.64</td>
<td>4.67±1.37</td>
</tr>
<tr>
<td>lysoPC a C18:2, µM</td>
<td>22.42±8.33</td>
<td>23.16±11.65</td>
<td>21.40±8.20</td>
</tr>
</tbody>
</table>

Quantitative data are presented as mean ± standard deviation. PC aa C40:1, Propionyl acylcarnitine (C3) and C16:1-OH were reported by Mapstone et al. (2014), but were not measured in the current analysis. PC aa, diacyl form; PC ae, acyl-alkyl form.

These results indicate that a biomarker profile reflecting disturbed phospholipid metabolism and perhaps indicative of early neurodegeneration can be modified in AD by providing nutrients which rate-limit phospholipid biosynthesis. These nutrients are substrates in the Kennedy pathway which synthesizes the phospholipids present in synaptic membranes (Sakamoto et al. 2007, Wurtman et al. 2006). Enhancing the availability of these nutrients could thus increase synapse number and memory function in AD (van Wijk et al. 2014). Previous observations from the same study indicate that the current changes in plasma PCs levels are accompanied by improved memory performance (Scheltens et al. 2010, Scheltens et al. 2012) and preserved functional connectivity and brain network organization, as assessed by electroencephalography (EEG) analyses (de Waal et al. 2014) in patients with mild AD, supporting the hypothesis that this nutritional...
intervention ameliorates synaptic dysfunction. Thus, these observations indicate that the changes in peripheral phospholipids may be indicative for the changes induced in the brain, i.e., increased synaptic membrane synthesis. It is reasonable to expect that the current nutritional intervention induces similar changes in the peripheral phospholipid levels in preclinical AD subjects, while the implications for disease risk modification are uncertain and need further investigation. In conclusion, our findings suggest that a nutritional intervention that raises levels of nutrients normally rate-limiting in phospholipid synthesis may also be useful in asymptomatic subjects with plasma lipid biomarker profiles predictive for phenoconversion to aMCI/AD.
Disclosure statement
Authors' disclosures available online:

List of abbreviations
AD, Alzheimer’s disease
aMCI, amnestic mild cognitive impairment
ANCOVA, analysis of covariance
DHA, docosahexaenoic acid
EEG, electroencephalography
EPA, eicosapentaenoic acid
ESI-MS/MS, electrospray ionization tandem mass spectrometry
PC, phosphatidylcholine
UMP, uridine monophosphate
References

