
6
P R O T O T Y P I N G T H E D E T E C T I O N O F
I N T E R A C T I O N S U S I N G S W I S H I N F R A S T R U C T U R E

Reality is merely an illusion,
albeit a very persistent one.

Albert Einstein

SWISH provides a general purpose collaborative infras-
tructure for applying Prolog reasoning over an RDF dataset
together with features that facilitates prototyping Seman-
tic Web applications. In this paper we report on the use
of SWISH for efficiently developing a prototype for detec-
tion of clinical guideline interactions. These guidelines are
a set of medical recommendations meant for supporting
doctors on tackling a single disease. However, often guide-
lines need to be combined for treating patients that suffer
from multiple diseases, and then a number of interactions
can occur. The generic interaction rules are implemented
in SWI-Prolog and the guideline RDF-data is enriched
with clinical Linked Open Data (LOD) (e.g. Drugbank,
Sider). We show the implementation of the proposed the-
ory about interaction detection in a case-study on com-
bining three guidelines. The experiment is interactively
described using a SWISH notebook and the results are
graphical visualised empowered by graphviz.

This chapter is based on Zamborlini, V.; Wielemaker, J.;
da Silveira, M.; Pruski, C.; ten Teije, A.; van Harmelen, F.

“SWISH for prototyping Clinical Guideline Interactions The-
ory” in Proc. of the Workshop on Semantic Web Applications
and Tools for Life Sciences, Amsterdam, Netherlands, 2016.

6.1 introduction

Building semantic web applications classically follows a three-tier
model: storage, application logic (reasoning) and presentation. Many
tools and languages have been proposed for supporting these tiers.

143

144 swish for prototyping detection of interactions with lod

For the storage tier, LOD (Linked Open Data) triplestores typically
provide their data through a SPARQL endpoint. The application
logic (reasoning) tier can be implemented in many languages, where
typical choices are Java or Python. However, implementing a rule
based reasoning layer in these languages that bind to SPARQL is
not trivial. Finally, the presentation tier can be implemented using
the web-page generation facilities of languages such as Java, Python,
Ruby or NodeJS, dedicated web programming systems such as PHP
or ASP or in the client using JavaScript. The language boundaries be-
tween the tiers are relatively hard to maintain, which makes such as
software stack mostly viable for large applications that are designed
in a top-down fashion and implemented by a team.

Life Science researchers are currently benefiting and contributing
to the Semantic Web [20]. For instance, LinkedLifeData (LLD) is an
integrated linked data repository for health care and life sciences
promoted by the W3C Semantic Web for Health Care and Life Sci-
ences Interest Group1. In this context, semantic-web-based prototyp-
ing can favour reducing the overhead for connecting the three tiers,
while speeding up and enhancing the interaction with domain ex-
perts. Moreover, to ensure that the results are verifiable, reproducible
and reusable [59], code and data should be accessible in a user friendly
way, so that scientists and domain experts can freely explore it.

To this end, SWISH, and in particular the SWISH package for
ClioPatria [104], offers an infrastructure that supports all three tiers
in an interactive, web-based and cooperative environment for pro-
totyping linked data applications. ClioPatria is a SWI-Prolog based
semantic web application framework. The RDF storage tier is im-
plemented as a low-level C module that is tightly integrated into
Prolog, a perfect language for the application logic tier due to its na-
tive support for rule based reasoning. SWISH enhances Cliopatria’s
support for prototyping2 by providing a web-based development en-
vironment and, for the presentation tier, an infrastructure for user
interfaces that act as a shared platform, similar to a wiki. It supports
both programmers and domain experts with little or no program-
ming experience and facilitates cooperation between them.

In the first implementation of our theory [114] we followed the clas-
sical path aforementioned: (i) we used Stardog for the storage tier,
(ii) for the application logic tier a combination of OWL2 inferenc-

1 See http://linkedlifedata.com and https://www.w3.org/wiki/HCLSIG.
2 [104] presents ClioPatria as suitable infrastructure for prototyping linked data apps.

6.2 background 145

ing, Stardog SPARQL rules (a SWRL dialect) and custom SPARQL
update queries to perform reasoning managed by a Python server-
application and (iii) we used html+javaScript for the presentation
tier. Besides the inherent complexity of assembling those tiers to-
gether, the limitations of OWL2 for detecting the interactions, forced
the use of multiple knowledge representation languages. Altogether,
the resulting system was expensive to build and maintain. There-
fore, in [114] we chose for SWI-Prolog via SWISH, which gave us
an integrated environment for prototyping our theory using a single
language for expressing our inference rules, benefiting understand-
ability and maintainability. And finally, in the present work we also
benefit from SWISH for the presentation tier by automatically build-
ing a graphical representation for the results.

This paper reports on the use of SWISH for prototyping a theory
about representing knowledge underlying clinical guidelines with
rules for detecting interactions among recommendations [113] (TMR -
Transition-based Medical Recommendation). It allowed for efficiently
developing a prototype that demonstrate the applicability of the the-
ory using both some clinical guideline data manually modelled in
RDF and existing clinical knowledge available as LOD such as Drug-
bank and Sider3. This online environment allows for scientists to
check, reuse, and modify the code and data. The use of notebooks
and graph visualizations favors the communication with scientists
and domain-experts.

The remainder of this paper describes background knowledge about
SWISH features (Sect. 6.2.1) and TMR theory (Sect. 6.2.2). Then Sect. 6.3
describes the use of SWISH for prototyping the TMR theory and
Sect. 6.4 provides the final considerations.

6.2 background

6.2.1 SWISH

6.2.1.1 The architecture of SWISH.

SWISH started life as a Prolog oriented alternative to jsfiddle,4 allow-
ing people to write, save and share Prolog programs on the web. It
was further developed for prototyping data fusion tasks on relational
databases in a project called DataLab. For documentation and tutorial
purposes we added notebooks, inspired by iPython notebook5.

3 http://www.drugbank.ca and http://sideeffects.embl.de
4 https://jsfiddle.net
5 now called Jupyter http://jupyter.org

146 swish for prototyping detection of interactions with lod

SWISH is based on Pengines [54], a SWI-Prolog infrastructure to cre-
ate optionally sandboxed Prolog engines on a server and to interact
with them similarly to the Prolog top level. A pengine is represented
by a Prolog thread [103] and a temporal module for isolating the pro-
gram. Prolog threads can be created quickly while they can access a
shared Prolog and RDF database. SWISH adds a web interface and
a versioned store for programs and notebooks to Pengines. Most of
the web interface runs in the browser and is written in JavaScript.
The server side is written in Prolog and provides a semantic highlight-
ing service, documentation services, (optionally) authentication and
a the program store (for details about the architecture see [103]).

6.2.1.2 Using SWISH to prototype LOD applications

SWISH is essentially a wiki providing collaborative editing of pro-
grams as well as user interfaces ranging from plain Prolog to full
HTML5 web applications. At its core, Prolog allows a programmer to
define abstraction over the atomic RDF relations that model the data
at a level that is more suitable for defining the application logic. For
example, if there are several datasets, e.g., d1 and d2, which describe
symptoms, we can define a predicate that unifies this data, as showed
in the code below. In the remainder of the application logic one could
simply refer to symptom(S) which makes the application logic clearer
and more compact while it greatly simplifies adding new datasets.

symptom(S) :- rdf(S, rdf:type, d1:’Symptom’).
symptom(S) :- rdf(I, d2:hasSymptom, S),

rdf(I, rdf:type, d2:’Disease’).

The basic abstraction layer can be included into one or multiple
programs that define the application logic. The abstraction layer as
well as the application logic can be tested interactively and incremen-
tally using one of the several interface methods provided by SWISH
and described below.

• While a programmer is exploring the data to find suitable ab-
stractions and prototype rules, the web-based version of the
Prolog interactive top level is used to run queries on these pred-
icates. Note that, in contrast with e.g., SPARQL, queries can be
developed and tested in a modular fashion.

• Results can be presented in a domain specific format using ren-
dering plugins. Standard plugins may be used to create tables,

6.2 background 147

charts and graphs (example in Fig. 6.3). After being loaded,
these plugins are triggered by specifically shaped Prolog terms.
For example, the graphviz6 plugin creates a simple graph with
two nodes from a term digraph([a->b]). Domain specific plu-
gins can be added. These plugins can exploit all facilities of
modern browsers, notably HTML5, SVG and JavaScript.

• Once domain experts need to be involved, tasks may be doc-
umented and scripted using a notebook. A notebook is an in-
teractive document consisting of markdown text for explaining
the notebook, canned Prolog queries that are executed by click-
ing a button and may use one of the above described rendering
plugins to present results in an attractive form. Finally, there
are program fragments that include shared programs and bind
these together.

• Notebooks provide HTML cells that allow writing full web ap-
plications. Such applications may be implemented fully inter-
actively using the CodeMirror based HTML/JavaScript editor.
It is also possible to reuse externally developed JavaScript li-
braries and use the SWISH environment merely to configure
the interface and bind it to the application logic.

• Finally, predicates can be accessed through an API. Currently
there are clients for this API for Prolog, bash (Unix shell),
JavaScript (browsers and NodeJS), Java and Ruby. Except for
the bash client, all clients can request additional answers incre-
mentally while multiple answers can be returned in chunks for
optimal performance when downloading large sets of answers.

The different interfaces allow a variety of users to cooperate. Ini-
tially, the Prolog programmer typically wants access to the raw data
rather than having to deal with complex domain specific representa-
tions. The SWISH URI plugin renders URIs as links that opens a page
in the ClioPatria interface showing the URI in context. At the other
end of the spectrum, e.g., in the use case application described in
this article, we have computed interactions between medical guide-
lines and show these in a way that is understandable to a doctor.
Once the structure of the data and the notion of guideline interaction
diagrams becomes clear it is worthwhile exploiting the Graphviz plu-
gin to make a somewhat crude but usable graphical representation

6 http://www.graphviz.org/

148 swish for prototyping detection of interactions with lod

(see Fig. 6.3). This representation helps the programmer evaluating
the ruleset and can be used in discussions with domain experts. In
this scenario the programmer creates queries collaboratively with a
doctor and discusses the result using the presented diagram. HTML
notebook cells can be used to realised a modern web application that
allows non-programmers to interact with the system. HTML note-
book cells will be used in future work.

6.2.2 Clinical Guideline Interactions Theory

This section briefly introduces the main concepts of the TMR model,
the interaction rules and the applied nanopublication structure (see
[113] for more details).

The graphical schema illustrated in Fig. 6.1 introduces the main
concepts, including one detected interaction. In the right side, the
big rectangles (boxes) represent causation beliefs about transitions
regarding a property, which are promoted by executing a care ac-
tion (e.g., blood pressure does change from high to normal by adminis-
tering Thiazide). A care action is represented as an ellipse within the
causation-box, whilst a transition is described by the affected prop-
erty (e.g., blood coagulation described on the top) and by the pre- and
post-situations (whose values are described in the small boxes con-
nected via directed arrow from pre to post). They either contain the
values for the referred property (e.g. normal or low) or a question
mark (‘?’) which indicates that the initial or final values are not in
the data. The gray-shaded boxes indicate that the causation is im-
ported from an external knowledge source, in this example, Sider. A
recommendation is represented as a rounded box, with an identi-
fier for reference (e.g., HT.1), and its deontic strength (e.g., should or

Figure 6.1: TMR graphical schema

6.2 background 149

should not) is indicated by a thick directed arrow connecting it to the
causation-box, blue for positive and red for negative.

Finally, when combining clinical knowledge from different guide-
lines and external sources, a number of interactions can be identified,
e.g., drugs recommended more than once or recommended drugs
that have incompatible effects. These interactions can be described in
the form of rules, exemplified here in an intuitive simplified format:

IF positive recommendation R1 to action A1 to change sit. S1 &

positive recommendation R2 to action A2 to change sit. S2 (6=S1) &

action A2’is believed to bring about S1 (A2’6=A1, A2’✓A2 or A2’�A2)

THEN R1 and R2 have ‘external’ incompatible effect

When applying this rule to the aforementioned example we have
the positive recommendation DB.3 (as R1) about Administering Insulin
(A1) for changing High Blood Sugar Level (S1). Next, the recommen-
dation HT.1 (as R2) advises Thiazide Administration (A2) to change
something else. However, a subtype of Thiazide called Bendroflume-
thiazide (A2’) is known to bring about High Blood Sugar Level (S1)
according to Sider. Therefore, there exists an interaction labeled in
Fig. 6.1 as ‘External Incompatible Effects’ connecting the interacting rec-
ommendations and refering to the external causation. Observe that
this interaction rule is generic, i.e., it applies not only to this example
but to whatever other similar scenario that might happen when com-
bining multiple guidelines. This and other generic rules are formally
defined in [113] for detecting other external interactions (‘External
Alternative Action’ and ‘External Incompatible Action’), which also
use external knowledge sources, and internal interactions, i.e., the
detection rules use only knowledge provided within the guideline
(‘Repeated Action’, ‘Alternative Actions’, ‘Contradictory Norms’, ‘Re-
pairable Transitions’).

6.2.3 RDF Data as Nanopublications

The aforementioned data is provided in RDF format using the Nanop-
ublication structure, which presupposes the use of Prov vocabulary as
explained in [113]7. Roughly the goal is to look at recommendations
and beliefs as assertions enriched with provenance data. To illustrate
this, Fig. 6.2 presents a (simplified) schema for the nanopublication
for the external causation belief mentioned in the previous section.

7 See http://nanopub.org/wordpress and http://www.w3.org/TR/prov-o.

150 swish for prototyping detection of interactions with lod

Assertion1

m2:CausationBelief
a"always" m2:probability

Adm.
Bendroflum
ethiazide

Tr. High Blood
Sugar Level

m2:causes

Provenance1

prov:wasDerivedFrom
Sider

sd:Bendrofl...

sd:HighBSL
_ prov:used

prov:was
GeneratedBy

prov:Activity

a

prov:used

Figure 6.2: Nanopublication (simplified) schema proposed for causation be-
lief imported from Sider.

On the left hand side the named-graph Assertion1 is of type Cau-
sation belief with probability always about Adm. Bendroflumethiazide
causing a transition to High Blood Sugar Level. On the right hand side,
the named-graph Provenance1 says the assertion was derived from
Sider and was generated by an activity that used two resources from
Sider, i.e., the drug and the side-effect URIs. Within this structure,
this and other provenance information can be stored for further ref-
erence. For example, the beliefs imported from a certain source can
be considered not trustworthy and thefore can be skipped by the
inference rules. Or the external resources on which a certain causa-
tion relies can be inspected by the experts in order to decide “on the
fly” whether to trust it or not. The graph visualization makes these
resources accessible by clicking the external source.

6.3 a swish-based prototype for clinical guidelines in-
teractions

This section describes the usage of SWISH to implement the afore-
mentioned tiers and a case-study for illustrating the obtained results.

6.3.1 Storage tier: TMR Model and Data as SWI-Prolog Facts

SWISH relies on Cliopatria as a triple store where the OWL-RDF
files for the TMR model and the guidelines’ data are loaded via the
web interface. The external data, retrieved from the internet in RDF
format, is also loaded into the Cliopatria server. As previously men-
tioned, the tight integration of Cliopatria with the Prolog language
makes the loaded RDF data available as normal Prolog facts. SWI-
Prolog queries can be used for accessing the RDF data, such as the
following one retrieves all the Event types that are believed to cause
another one:

?- rdf(EventT1, vocab:’causes’, EventT2, CBelief)

6.3 a swish-based prototype for clinical guidelines interactions 151

6.3.2 Application logic tier: SWI-Prolog Rules

Multiple Prolog programs are used to define rules for: (i) checking
data properties: defining predicates that return True if a certain graph
pattern is found and False otherwise (negation as failure); (ii) retriev-
ing data: defining predicates that abstract from complex graph pat-
terns matching; (iii) asserting data: defining rules that assert new
RDF triples given given that a certain graph patterns is found.

The code is implemented using the SWISH editor that allows for
modular testing of parts of the code. We divided the code into files
that address different aspects of the proposed theory. We briefly de-
scribe herewith the main issues addressed by three relevant files and
illustrate them with one rule.
guidelines.pl This file contains rules for querying and manipu-
lating clinical data according to the TMR model. Below, we present
one predicate for retrieving data about the causation relation between
two event types:

causes(EventT1, EventT2, Prob, CB) :-
rdfs_individual_of(CB, vocab:’CausationBelief’),
rdf(CB, vocab:’probability’, literal(type(xsd:string, Prob)), CB),
rdf(EventT1, vocab:’causes’, EventT2, CB).

externalSources.pl External sources may adopt different vocab-
ularies for describing similar data. To allow for the interaction rules
to be independent of specific vocabularies, we provide importing
rules for each source that reinterprets the data as beliefs according
to the TMR model. Naturally, we assume that the local data and the
external data share some properties (e.g., the UMLS code) that can
be used to align the entities. Below we illustrate the rule for asserting
new data by importing side effects from Sider as causation beliefs:

siderAssertCausationSideEffect :-
forall(
((rdf(_, vocab:’hasTransformableSituation’, Situation)

; rdf(_, vocab:’hasExpectedSituation’, Situation)),
rdf(Situation, owl:sameAs, SideEffect),
rdf(DrugSider, sider:’sideEffect’, SideEffect),
rdf(DrugSider, owl:sameAs, DrugType),
rdfs_individual_of(DrugType, vocab:’DrugType’),
rdf(Action, vocab:’administrationOf’, DrugType)

),
(assertPartialTransition(Situation, NewTr),

rdf_global_id(data:’sider’, SourceURI),
assertCausation(Action, NewTr, ’always’, SourceURI, NanopubURI),

152 swish for prototyping detection of interactions with lod

assertProvResourceUsed(NanopubURI, DrugSider),
assertProvResourceUsed(NanopubURI, SideEffect))).

interactionRules.pl Internal and external interaction rules are
described in this file, where different types of interactions are in-
ferred based on patterns of recommendations and beliefs. Hereby
we illustrate the rule for asserting interactions of type External Incom-
patible Effects (discussed as a simplified format in Sect 6.2.2):

detectExternalIncompatibleEffect :-
forall(
(regulates(Reg, Norm1, Act1, Strength, CB1),
causes(Act1, Tr1, ’always’, CB1),
((Strength = ’should’, rdf(Tr1, vocab:’hasTransformableSituation’, St1))
;(Strength = ’should-not’, rdf(Tr1, vocab:’hasExpectedSituation’,St1))),
causes(Act, Tr, ’always’, CB), different(Act, Act1),
rdf(Tr, vocab:’hasExpectedSituation’, St1),
regulates(Reg, Norm2, Act2, ’should’, CB2),
relatedTypes(Act, Act2), different(CB2, CB)

),
(existsInteraction(’ExternalIncompatibleEffects’, Norm1, Norm2, CB))).

6.3.3 Presentation tier: Notebook and Graph Visualization

For the presentation tier we used graphviz to produce a graph vi-
sualization that resembles the graphical schema manually designed
in previous work and that was successfully used for communication
with domain experts. The Prolog code required to extract the clin-
ical data to be plotted and create a representation suitable for the
graphviz plugin is accessible via the main file interaction_graph.pl.

To enhance the communication with other researchers and domain
experts we composed a SWISH notebooks8 that explains step by step
the initialization (data acquisition and inferencing) of a case study
described in [113] on combining parts from 3 guidelines: Diabetes,
Hypertension and Osteoarthritis. The notebook allows for users to
access partial results achieved in each step of the experiment. Fig. 6.3
presents a screenshot of the notebook containing a graph visualiza-
tion of the case-study described in this section. Each of the elements
in the graph can be clicked to explore its related data in the ClioPa-
tria interface. In particular, the small box representing external data
redirects a page referring to the used external resources.

8 See https://tinyurl.com/CGGraph and https://tinyurl.com/CGMainteance

6.3 a swish-based prototype for clinical guidelines interactions 153

Figure 6.3: SWISH notebook with visualization of case study on combining
guidelines for OA+HT+DB

The case-study depicted in Fig. 6.3 demonstrates the detection of
interactions9 of the original case study [113]. The presented recom-
mendations are:

diabetes (db) :
(DB.2) Should administer NSAID to reduce blood coagulation

osteoarthritis (oa) :
(OA.1) Should NOT adm. Aspirin to avoid increasing risk of gastroin-
testinal bleeding. (OA.2) Should administer Ibuprofen to reduce pain

9 The example is reduced due to space restrictions, but recommendations’ ID’s are
the original.

154 swish for prototyping detection of interactions with lod

hypertension (ht) :
(HT.1) Should administer Thiazide to reduce the blood pressure

Finally, the following interactions are detected by applying the in-
teraction rules:

1. DB.2 and OA.1 can be contradictory norms since the NSAID in DB.2
can be prescribed as Aspirin, which is non-recommended by OA.1.

2. DB.2 and OA.2 can be repeated action since the NSAID in DB.2 can
be prescribed as Ibuprofen, which is already recommended by OA.2.

3. DB.2 and OA.2 potentially interact since the NSAID in DB.2 can be
prescribed as Aspirin which is said in Drugbank to be incompatible
with Ibuprofen recommended by OA.2

4. HT.1 and DB.2 potentially interact because the situation that is meant
to be changed by HT.1 (high blood pressure), can be promoted as side-
effect if NSAID in DB.2 is prescribed as Ibuprofen, according to Sider.

6.4 discussion & conclusion

This paper shows that SWISH was successfully applied for prototyp-
ing the Clinical Guideline Interaction theory [113] (extended version
in [118]) by providing a single environment that supports the three
tiers of a semantic web application: storage, application logic and pre-
sentation. This allows for the medical informatics researcher to focus
on the solution to be provided rather than on connecting the tiers
together using different languages and tools. Prolog alone now pro-
vides the rule-based reasoning required for our purpose, as opposed
to the previous implementation when we tried to be compliant to the
“Semantic Web Standard Languages” such as OWL and SPARQL (see
Sect. 6.1). Finally, the resulting prototype favors the communication
with other researchers and domain experts by providing (i) a note-
book where the case-study experiment is described step by step and
(ii) the dynamic graphical visualization of the inferred interactions.
In the future we will improve the implementation to calculate the rel-
evance of interactions so that they can be filtered to favor readability,
specifically when many interactions are inferred. We will provide a
more user-friendly interface prototype by adding HTML cells to the
notebook that allows domain experts to interact with the system. A
dedicated web application can be built using any web application
framework that reuses our application logic tier by means of the API
provided by the Prolog/SWISH.

