Contents

1. Introduction
 1.1. Urban congestion
 1.2. Background and research questions
 1.3. Building blocks
 1.3.1. Congestion pricing
 1.3.2. Double dividend
 1.3.3. Space
 1.3.3.1. Monocentric city models
 1.3.3.2. General equilibrium models of land-use and transport
 1.3.3.2. Other approaches

2. On revenue recycling and the welfare effects of second-best congestion pricing in a monocentric city
 2.1. Introduction
 2.2. Model
 2.2.1. Households
 2.2.2. Firms
 2.2.3. Road technology and externalities
 2.2.4. Public budget
 2.2.4.1. Road toll schemes
 2.2.4.2. Revenue return schemes
 2.2.5. Equilibrium
 2.3. Unimodal framework
 2.3.1. Calibration and base equilibrium
 2.3.2. Policy analysis
 2.3.3. Sensitivity analysis
 2.4. Bimodal framework
 2.4.1. Expanded model
 2.4.2. Results
 2.5 Concluding remarks
 Appendix 2.A: Constant marginal utility of income
 Appendix 2.B: Marginal tax reform and double dividend
 Appendix 2.C: Technical details (numerical optimization)

3. Second-best urban tolls in a monocentric city with housing market regulations
 3.1. Introduction
3.2. Model
 3.2.1. Households
 3.2.2. Developers
 3.2.3. Firms
 3.2.4. Commuting
 3.2.5. Government and public budget
 3.2.6. Equilibrium without distortions in the housing markets
 3.2.7. Equilibrium with a uniform building height restriction
 3.2.8. Equilibrium under zoning

3.3. Pigouvian taxation under non-price regulation in related markets

3.4. Calibration
 3.4.1. Unregulated equilibrium
 3.4.2. Pigouvian toll

3.5. Policy analysis
 3.5.1. Pigouvian toll in cities with a different maximum FAR
 3.5.2. Pigouvian toll in a city with zoning
 3.5.3. Optimal toll in the presence of ad-valorem property taxation

3.6. Concluding remarks

Appendix 3.A: Notation
Appendix 3.B: Computational details
Appendix 3.C: Numerical illustration of Pigouvian optimality

4. The need for speed: all-in-one versus iterative-shortcut approaches for solving general equilibrium models of urban transportation and land use

4.1. Introduction

4.2. Constructing a sample all-in-one GELUT model
 4.2.1. Space, network representation and discrete choice
 4.2.2. Household behavior
 4.2.3. Firms, developers and assembly industry
 4.2.4. Transport system
 4.2.5. Government and public budget
 4.2.6. General, stochastic user equilibrium
 4.2.7. Model closure
 4.2.8. Equation count

4.3. Solution approaches
 4.3.1. The all-in-one solution algorithm
 4.3.2. The iterative-shortcut approach
 4.3.2.1. The need for speed
 4.3.2.2. A summary of the iterative-shortcut approach
 4.3.2.3. Approximating the all-in-one with an iterative-shortcut model: the special matching case
 4.3.2.4. Approximating the all-in-one with an iterative-shortcut model: the general, non-matching case
4.3.3. Computational examples
4.4. Summary
Appendix 4.A: Notation
Appendix 4.B: Proposed algorithms
Appendix 4.C: A note on the correct use of numéraire
Appendix 4.D: Comparative algorithm analysis
Appendix 4.E: Coincidence of approaches
Appendix 4.F: Derivation of closed-form indirect utility

5. Second-best road taxes in polycentric networks with distorted labor markets

5.1. Introduction
5.2. Model
 5.2.1. Space, network representation and discrete choice
 5.2.2. Households
 5.2.3. Firms
 5.2.4. Developers
 5.2.5. Transport
 5.2.6. Government and public budget
 5.2.7. General, stochastic user equilibrium
5.3. Application to the area of Randstad: key data and calibration
5.4. Policy analysis
 5.4.1. Lump-sum revenue recycling
 5.4.2. Labor tax cuts
 5.4.3. Sensitivity analysis
5.5. Concluding remarks
Appendix 5.A: Notation
Appendix 5.B: Solving for the general, stochastic-user equilibrium
Appendix 5.C: Calibration with genetic algorithms
Appendix 5.D: Optimal tolls against the marginal external cost of congestion
Appendix 5.E: Replicability of simulation experiments
Appendix 5.F: Numerical approximation of the key double-dividend effects

6. Toll competition in General Equilibrium Land Use and Transport models: explorations with a North-South setting for Randstad

6.1. Introduction
6.2. Model
 6.2.1. Main structure
 6.2.2. Extensions and modifications
6.3. Calibration
6.4. Discussion
6.5. Summary
7. Conclusions

7.1. Recap of findings and their policy relevance
7.2. Recap of the methodological contribution
7.3. Future challenges