Targeting the cause affecting the course

Characterization and Optimization of Experimental Models for Pulmonary Arterial Hypertension

Michiel Alexander de Raaf

Pulmonary Arterial Hypertension is a progressive and devastating disease characterized by dysfunction and remodeling of the pulmonary vasculature, leading to increased pulmonary vascular resistance, compensatory right ventricular hypertrophy, remodeling, and eventually dilatation and heart failure. To find an effective treatment for Pulmonary Arterial Hypertension, animal models are used to simulate the disease.

In this thesis, Michiel Alexander de Raaf and colleagues describe characterizing and optimizing the experimental models for pulmonary arterial hypertension. They evaluated several treatments for disease progression and compensation, including a model of injury against the disease. The treatment efficacy was evaluated.