Chapter five

Exploring resting state connectivity in patients with psychotic depression

Mardien L. Oudega, MSc, MD, PhD, Ysbrand D. van der Werf, PhD, Annemieke Dols MD, PhD, Mike P. Wattjes, MD, Frederik Barkhof, MD, PhD, Filip Bouckaert, MD, Mathieu vandenbulcke, MD, PhD, François-Laurent De Winter, MD, Pascal Sienaert, MD, PhD, Piet Eikelenboom, MD, PhD, Max L. Stek, MD, PhD, Odile A. van den Heuvel, MD, PhD, Didi Rhebergen, MD, PhD, Eric van Exel, MD, PhD

1 Department of Psychiatry, VU University Medical Center (VUmc), Amsterdam, the Netherlands
2 Amsterdam Neuroscience, VUmc/UVa/AMC, Amsterdam, the Netherlands
3 EMGO+ Institute for Health and Care Research and VU University Medical Center/GGZ inGeest, Amsterdam, the Netherlands.
4 Department of Radiology, VUmc, Amsterdam, the Netherlands
5 Department of Anatomy and Neurosciences, VUmc, Amsterdam, the Netherlands
6 Department of Old Age Psychiatry, University Psychiatric Center KU Leuven (Catholic University of Leuven), Leuven, Belgium
7 ECT Department, University Psychiatric Center KU Leuven (Catholic University of Leuven), Leuven, Belgium

* Both authors contributed equally to the paper

Submitted for publication
Abstract

Background
Severe depression with or without psychotic symptoms is associated with high morbidity and mortality. Network dysfunction may be involved in the disease mechanisms of severe depression. We aim to evaluate network connectivity in severely depressed in-patients with and without psychotic symptoms to gain more insight into the underlying disease mechanisms.

Methods
A naturalistic cohort study was performed at two sites. Older patients with major depressive disorder with or without psychotic symptoms were included (n=23 at site one, n=26 at site two). Resting state 3-Tesla functional MRI scans, with eyes closed, were obtained and Montgomery-Åsberg Depression Rating Scales were completed. We denoised data and calculated resting state networks in the two groups separately. We selected five networks of interest (1.bilateral-, 2.left- and 3.right frontoparietal network, 4.default mode network (DMN) and 5.bilateral basal ganglia and insula network) and performed regression analyses with severity of depression, as well as presence or non-presence of psychotic symptoms.

Results
The functional connectivity (FC) pattern did not correlate with severity of depression. Depressed patients with psychotic symptoms (n=14, 61%) compared with patients without psychotic symptoms (n=9, 39%) from site one showed significantly decreased FC in the right part of frontoparietal network (p=0.002). This result was not replicated when comparing patients with (n=9, 35%) and without (n=17, 65%) psychotic symptoms from site two.

Conclusion
Psychotic depression may be associated with decreased FC of the frontoparietal network, which is involved in cognitive control processes, such as attention and emotion regulation. These findings suggest that FC in the frontoparietal network may be related to subtype of depression, i.e. presence of psychotic symptoms, rather than severity of depression. Since the findings could not be replicated in the 2nd sample, replication is needed before drawing definite conclusions.
Introduction

Psychotic depression is a severe psychiatric disorder associated with high morbidity (1) and mortality (2). Fifteen to 20 percent of patients with a unipolar depression show psychotic features (3, 4), characterized by mood-congruent hallucinations and/or delusions (5). Prevalence of patients with psychotic depression is even higher among admitted older patients with rates ranging from 24 to 53% (6, 7).

Network dysfunction in the brain is proposed to be of major importance in order to understand the disease mechanism of depression (8). To date, only one study has focussed on network dysfunction in depression with psychotic symptoms (9). Depressed patients with psychotic symptoms, compared with patients without, showed significantly decreased functional connectivity (FC) between the hypothalamus and the subgenual anterior cingulate cortex (9). The authors used seed-based resting state analyses, i.e. they estimated the networks based on a reduced set of regions, rather than studying whole-brain connectivity, applying independent component analyses (ICA).

The only study to date, using ICA to evaluate whole-brain network connectivity in depressed patients, was conducted by Hyett and colleagues (10) focussing on the impact of melancholic symptoms on network functioning in depression. Hence their findings cannot be directly generalized to depression with psychotic symptoms. However, considering the broad array of overlapping symptomatology, including weight loss or loss of appetite, psychomotor agitation of retardation, early morning awakening, excessive guilt and worse mood in the morning (5), it has been suggested that depression with melancholic symptoms and depression with psychotic symptoms are two subtypes of depression that have a shared disease mechanism (11). Therefore, these findings may reinforce our hypothesis on ICA-identified network functioning in psychotic versus non-psychotic depressed patients. The results of Hyett and colleagues (10), using ICA and dynamic causal modelling, showed decreased FC between the right frontoparietal network and the insula in melancholic compared with non-melancholic patients. Although melancholic depression is one of the most severe subtypes of depression Hyett did not report on a relation between severity scores and frontoparietal connectivity (10).

We performed a study to evaluate resting state networks in depression with and without psychotic symptoms. Patients were included from the MODECT study (Mood Disorders in Elderly treated with Electro Convulsive Therapy), conducted at two specialized old age clinical facilities. Considering the high prevalence and admission rates of older persons with psychotic depression, this provides an excellent opportunity to study underlying networks in psychotic depression. The aim of this
study is to evaluate network connectivity, using a whole-brain approach, in relation to depression symptom severity and the presence of psychotic symptoms to gain insight in the disease mechanisms explaining clinical differences.

Based on the ICA study of Hyett (10), with pre-selected frontoparietal networks, executive control network, the insula and the default mode network (DMN), we hypothesize that psychotic symptoms accompanying depression are related to decreased FC of the bilateral-, left- and right frontoparietal network, DMN and the (bilateral basal ganglia and insula network), and that severity of depression is not related to connectivity of resting state networks.

Methods
The current study is part of a two-site naturalistic, longitudinal study (MODECT: Mood Disorders in Elderly treated with Electro Convulsive Therapy) including patients with severe unipolar depression according to DSM-IV-TR criteria (5) eligible for electroconvulsive therapy (ECT). Patients aged 55 years and older, referred for ECT, were recruited from tertiary psychiatric hospitals (GGZ inGeest, Amsterdam, the Netherlands (site one) and University Psychiatric Center, KU Leuven, Belgium (site two). Exclusion criteria were another major DSM-IV-TR diagnosis, such as schizophrenia, bipolar or schizoaffective disorder and a history of major neurological illness (including Parkinson’s disease, stroke and dementia). Diagnoses were made by a psychiatrist and confirmed by the Mini International Neuropsychiatric Interview (MINI) (12). Data collection started on January 1, 2011, and finished on December 31, 2013. The local institutional boards of GGZ inGeest and the University Hospitals Leuven approved the study. Written informed consent was obtained from all participants.

Clinical evaluations
The diagnosis of depression with or without psychotic symptoms was based on the DSM-IV-TR criteria (short MINI interview, without melancholic depression) and clinical judgment of the treating psychiatrist. Late onset depression was defined as first episode of depression after the age of 55. Depressive symptom severity was rated with the Montgomery-Åsberg Depression Rating Scale (MADRS) (13). Global cognitive functioning was examined by the Mini-Mental State Examination (MMSE) (14). The MINI, MADRS and MMSE were completed by a research nurse for all patients. The duration of episode was defined as the period in months from the start of the current depressive episode until the start of ECT.
Statistical analyses
The Statistical Package for Social Sciences software (IBM statistics 20) was used for statistical evaluation of data. Demographics and clinical characteristics of patients are reported as means with standard deviation, medians with inter-quartile range (iqr) or absolute numbers with percentage of total group. Patient sub-groups were compared using independent sample T-tests, Pearson chi-square tests or Mann-Whitney U tests, where appropriate.

Resting state functional MRI
All patients underwent MRI scanning at 3.0-Tesla, following a standard protocol. In Amsterdam, a General Electrics Signa HDxt scanner (General Electric, Milwaukee, WI, USA) was used and in Leuven a Philips Intera scanner (Philips, Best, The Netherlands). Patients were instructed to keep their eyes closed and not fall asleep.

The rsfMRI series in Amsterdam included a total of 202 functional images (5 minute run), acquired with an 8-channel circularized head coil using a T2*-weighted single-shot gradient echo-planar imaging sequence (repetition time=1800ms; echo time=35ms; 64x64 matrix; field of view=21.1cm; flip angle=80°) with 34 ascending slices per volume (3.3x3.3mm in-plane resolution; slice thickness=3.0mm; inter-slice gap=0.3mm). Also a coronal 3D T1-weighted dataset was acquired (flip angle=12°, repetition time=7.84 milliseconds; echo time=3.02 milliseconds; matrix 256x256, voxel size 0.94x0.94x1 mm; 180 slices).

The rsfMRI series in Leuven included a total of 250 functional images (5 minute run), acquired with an 8-channel head coil using a T2*-weighted echo-planar imaging sequence (repetition time=1700ms; echo time=33ms; 64x64 matrix, field of view=230mm x 128mm x 230mm, flip angle=90°) with 32 axial slices per volume, voxel size 4 x 4 x 4 mm. Also a coronal 3D T1-weighted dataset was made (flip angle=8°; repetition time=9.6 milliseconds; echo time=4.6 milliseconds; matrix 256x256, voxel size 0.98x0.98x1.2 mm; 182 slices).

MRI data preprocessing steps
Data preprocessing was performed using the FSL 5.0.8 Brain Extraction Tool (BET) (15) for removal of non-brain tissue from the structural and functional magnetic resonance imaging (fMRI) scans. The first two resting state volumes of each patient time series were removed to avoid artefacts. FSL Melodic 3.14 was used for an ICA-based single-session denoising approach (16). The following standard processing steps were applied: high-pass filtering (100s), motion correction with MCFLIRT (17) for removal of head motion, voxel-wise demeaning, normalization of the voxel-wise variance, and spatial smoothing using a Gaussian kernel of FWHM=5.0 mm
with high-pass filtering. The preprocessed data were then linearly registered to the structural image using FLIRT with optimization and registered to MNI space using 12 and 7 degrees of freedom, respectively. An automated component classification method, called FIX 1.061 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX), was then used to classify and to regress the noise time series from the data. This method regresses out unique variance related to the noise components and motion confounds from the preprocessed datasets. This resulted in cleaned, EPI time-series for each patient.

Independent component analyses

Multi-session temporal concatenation ICA was used to analyze group ICAs with dimensionality set to 30 (indicating the number of networks to be extracted in the analysis). Due to the use of different scanner and imaging protocols at both sites, the datasets have been analyzed separately. Dual regression analyses (18) followed by randomize (19) for the statistical evaluation were used with dichotomous variables for the group comparisons and demeaned continuous variables of the MADRS scores (depression severity) for the correlation analysis. Masks were made from the 1. bilateral-, 2. left- and 3. right frontoparietal network, 4. DMN and 5. bilateral basal ganglia and insula network produced by the group ICAs with Z= 3.0. All individual analyses were cluster corrected using threshold free cluster enhancement and we additionally corrected for multiple comparisons so that we further divided the corrected p value of 0.05 by a factor 10 (five networks x 2 for two-tailed testing) leaving a significance threshold of p<0.005.

Results

Figure 1 shows a flow chart of 159 patients referred for ECT and asked to participate in the current study. A total of 23 patients were included in the analyses of site one and 26 patients were included in the analyses of site two (see flow diagram Figure 1).

Characteristics

There were no significant differences regarding age, gender, presence of psychotic symptoms, age at onset of first depression, depression symptom severity (total MADRS score), cognitive functioning (total MMSE score), duration of episode, between site one and site two (table 1).

Resting state networks

Multi-session temporal concatenation ICA was set at 30 resting state networks. Among these 30 networks were the DMN, insula, medial visual, frontoparietal, motor cortex, auditory, sensorimotor, executive control and cerebellum that corresponded...
Figure 1. flow chart

#At site one, ten patients had no scan due to a major scanner update and ten patients were excluded from analyses because they were scanned after a major scanner upgrade, disenabling comparing scans. Thirteen patients could not finish the fMRI protocol adequately, due to movement in the scanner and from 11 patients no images could be obtained due to refusal (3 patients) or unavailable slots of the MRI scanner (8 patients). Nine patients out of these 24 patients were diagnosed with a psychotic depression. In the end, 23 of the 67 recruited patients were included in the analyses of site one.

*At site two, 12 patients could not finish the fMRI protocol due to movement in the scanner and five patients refused an (f)MRI scan. Seven out of these 17 patients without a rsfMRI scan were diagnosed with psychotic depression at site two. In the end, 26 of the 43 recruited patients were included in the analyses of site two.
to those reported in previous studies (20). We selected the a priori defined networks-of-interest by visual inspection on the basis of the networks as they followed from the group ICA: 1. bilateral-, 2. left- and 3. right frontoparietal network, 4. DMN and 5. bilateral basal ganglia and insula (figure 2). Sex nor age of patients showed a correlation with these networks at neither site.

Correlation with severity of depression

The mean MADRS score was 32.87 (sd ± 11.9) and 33.8 (sd ± 6.7) for site one and site two, respectively. The dual regression analyses showed no significant associations between severity of depression (total MADRS score) and FC of the bilateral-, left- and right frontoparietal network, DMN and (bilateral basal ganglia and insula network) at either site (all p>0.005).

Relation with presence of psychotic symptoms

At site one, 14 patients (61%) out of 23 depressed patients were diagnosed with a depression with psychotic symptoms. These patients showed significantly lower FC in the right part of the bilateral frontoparietal network, compared with the depressed patients without psychotic symptoms (p=0.002) (see figure 3). At site two, nine patients out of 26 (35%) were diagnosed with depression with psychotic symptoms. No significant differences were observed in FC of the bilateral-, left- and right frontoparietal network, DMN and (bilateral basal ganglia and insula network) in the depressed patients with psychotic symptoms compared with the depressed patients without psychotic symptoms (all p>0.005).
Chapter 5

RESTING STATE IN PSYCHOTIC DEPRESSION

Figure 2. Selected networks in site one (A-E) and site two (F-J). Coronal, sagittal and axial view of resting patterns of the DMN (A x=1, y=-17, z=30 and F x=-3, y=-45, z=21), Basal ganglia and insula (B x=-1, y=1, z=2 and G x=-11, y=-23, z=3), frontoparietal left (C x=-49, y=-63, z=52 and H x=-18, y=55, z=19), frontoparietal right (D x=-49, y=-63, z=52 and I x=55, y=19, z=19) and frontoparietal bilateral (E x=46, y=25, z=21 and J x=-5, y=-81, z=35). Images are thresholded at z>3.

Figure 3. Decreased functional connectivity in the right part of the frontoparietal bilateral network of depressed patients with psychotic symptoms compared with patients without psychotic symptoms at site one, in blue (x=60, y=-25, z=33, p=0.002; for visualization purposes shown here at a cluster-corrected p<0.05), overlaid on the frontoparietal network (white, thresholded at z>3).
Discussion

This is the first study evaluating FC of resting state networks using ICA with five networks of interest in patients with severe depression with and without psychotic symptoms who were eligible for ECT and admitted to inpatient clinics.

Resting state FC was not associated with depression symptom severity. These findings are in line with a previous study (21) and may be explained by lack of variation in symptom severity of the studied patient samples, or FC may not be state-dependent, but dependent on the subtype of depression.

Psychotic depression, compared with non-psychotic depression, was associated with decreased FC in the right part of the bilateral frontoparietal network, at site one. This result was not replicated at site two.

The frontoparietal network is involved in cognitive control processes, such as attention and emotion regulation (22). Previous resting state studies in patients with psychosis, unrelated to depression, also showed decreased FC of the frontoparietal network (23). This suggests a similar pathophysiological mechanism across mental disorders with psychotic symptoms, possibly related to a diminished cognitive control and as a result, increased vulnerability to develop psychotic symptoms. This hypothesis fits with the conclusion of a large review of resting-state studies in patients at risk of developing psychosis (24). In addition, it has been suggested that decreased FC of the right frontoparietal network is related to the vulnerability for relapse in patients with psychotic depression (25).

Caldiero et al. (11) suggested a shared disease mechanism between melancholic depression and depression with psychotic symptoms, as these profiles both present with severe weight loss or loss of appetite, psychomotor agitation or retardation, early morning awakening, excessive guilt, and worse mood in the morning (5). Hyett and colleagues (10) analyzed resting-state FC in patients from an outpatient clinic and demonstrated that decreased FC between the right frontoparietal network and insula was associated with melancholic depression, as compared to non-melancholic depression. Our findings show decreased FC in the right part of the bilateral frontoparietal network in psychotic versus non-psychotic depressed elderly. This may suggest a shared disease mechanism between melancholic and psychotic depression. Hypoconnectivity of the frontoparietal network was also shown in a large meta-analysis of seed-based resting state FC analyses in heterogeneous groups of patients with major depressive disorder compared with healthy controls (8).
Although the results from the analyses at site one are consistent with findings from Hyett and colleagues (10), in site two we did not find a similar association between resting state FC and the presence of psychotic symptoms. This might be explained by differences in scanner protocol and limited statistical power. Nine patients (35%) at site two with psychotic symptoms were able to complete the fMRI scanner protocol compared with 14 (61%) at site one. Differences in scanner protocol may have influenced the number of included patients with psychotic symptoms at site two as the protocol required a longer scanning time (due to requirements for another study) and patients with psychotic features may not have been able to complete the scan protocol.

Strengths and limitations

To our knowledge, this is the first resting state fMRI study evaluating FC in depression with and without psychotic symptoms in patients who were referred for ECT and admitted to inpatient clinics. The strength of our study is the study design, which represents daily clinical practice when treating the most severely depressed older adults. This strength can also be regarded as a limitation. Since the study was parallel but subordinate to patient care, some patients needed ECT before inclusion could be completed, or patients were not willing to participate (figure 1). Furthermore, at site two the scanning time was longer, possibly explaining why fewer psychotic patients completed the scan protocol. As a result, we have included fewer patients with psychotic symptoms and may have underestimated the group differences. Next, we did not obtain DSM-IV-TR diagnoses of melancholic depression. This prevented a comparison between psychotic and melancholic symptoms and this most likely resulted in a comparison between patients with psychotic depression versus a more heterogeneous patient group. It is likely that this caveat in our study is biased towards an underestimation of the true difference in FC of the frontoparietal network in those with psychotic depression compared to those without psychotic depression.

Conclusion

Psychotic features, not the severity of depression, were associated with FC of the resting-state frontoparietal network in the patient sample of site one. This result was not observed in the patient sample of site two. The findings of site one suggest that FC in the frontoparietal network may be related to subtype of depression, i.e. presence of psychotic symptoms, rather than severity of depression, which is consistent with previous findings (21). However, replication is needed to confirm this conclusion.
References

