KRAS Mutated Non-Small Cell Lung Cancer: A Distinct Disease Entity?

Wouter W. Mellema
Daniëlle A.M. Heideman
Egbert F Smit
Erik Thunnissen

In the era of personalized medicine, cancer research is focused on options for molecularly targeted treatment. In NSCLC, mutations in the gene that encodes the epidermal growth factor receptor (EGFR) and the translocation between the genes that encode echinoderm microtubule-associated protein-like-4 and anaplastic lymphoma kinase (EML4–ALK) have been identified as predictive markers for particular targeted treatments, with good responses and outcomes in patients who receive these treatments [1,2]. On the other hand, there is no targeted treatment available for patients who have a mutation in KRAS, which is the most frequent mutation in patients with NSCLC. The question has been raised as to whether KRAS-mutated NSCLC can be considered as a distinct form of lung cancer. In this review, we try to answer this question by discussing the biology of KRAS mutation and its clinical behavior in respect of response to chemotherapy and outcome, and provide future perspectives of treatment of patients who have NSCLC with a KRAS mutation.

RAS biology

In humans, three RAS genes (HRAS, NRAS, and KRAS) have been described that encode four distinct but highly homologous RAS proteins (HRAS, NRAS, KRAS4A, and KRAS4B) that are approximately 21 kDa each. RAS proteins serve as transducers that couple cell surface receptors such as EGFR to intracellular effector pathways. The RAS proteins cycle between "on" and "off" conformations that are conferred by the binding of guanosine triphosphate (GTP) and guanosine diphosphate (GDP), respectively. Under physiological conditions, the transition between these two states is tightly regulated by guanine nucleotide exchange factors (GEFs), which promote the "on" state by exchange of GDP into GTP, and by GTPase-activating proteins (GAPs), which promote the "off" state by GTP hydrolysis. RAS can harbor transforming properties that are accomplished by gain-of-function mutations. A predominant target of most common somatic mutations in the oncogenic variants of RAS gene, such as oncogenic substitutions in residues G12, G13, and Q61, is the diminished inactivation of RAS activity by GAPs. The outcome of these substitutions is the persistence of the GTP-bound "on" state of RAS and, consequently, a constitutively active multitude of RAS-dependent downstream effector pathways. As such, oncogenic RAS functions fuel the tumorigenic process by capturing many of the original, as well as some of the newly established, hallmarks of cancer [3–5].
RAS and NSCLC: a distinct disease entity?

In patients with NSCLC, KRAS mutations are the most frequently detected and account for >90% of RAS mutations that are found in NSCLC, whereas HRAS and NRAS mutations are scarce (see the catalogue of somatic mutations in cancer at http://www.sanger.ac.uk/genetics/CGP/cosmic/). As NSCLC may harbor a KRAS mutation as a single specific mutated oncogene, this alteration is thought to be the primary genetic “driver” that leads to cancer in these particular cases. It is likely that KRAS-mutated NSCLC forms a distinct disease entity having unique tumorigenesis as KRAS mutation is found early in the tumorigenesis and exhibits clinicopathological features [6]. KRAS mutations are predominantly observed in the adenocarcinoma histotype of NSCLC; approximately 10–30% of lung adenocarcinomas harbor a KRAS mutation, mainly (i.e. in >95% of KRAS-mutant NSCLC) involving oncogenic substitutions in residues G12 or G13. KRAS mutations occur more frequently in smokers than never-smokers [7]. A slight difference in mutation types is noticed. KRAS transition mutations (G→A) are more commonly observed in patients who had never smoked cigarettes, whereas transversion mutations (G→T or G→C) are more commonly seen in former/current smokers [8]. The clinical behavior of patients with a KRAS mutation will be discussed below.

Preclinical data on KRAS and treatment

Treatment of KRAS-mutated lung cancer has been found to be quite complex in in vitro investigations. Attempted complete knockdown of mutated KRAS did not lead to large-scale induction of cell death, and there was an incomplete growth inhibitory effect [9]. It was shown that, although the mitogen-activated protein kinase pathway was significantly downregulated after mutant KRAS knockdown, increased levels of phosphorylated signal transducer and activator of transcription-3 (STAT-3) and phosphorylated EGFR, and variable changes in phosphorylated AKT (also known as protein kinase B), occurred. In addition, mutant KRAS knockdown appeared to sensitize the NSCLC cell lines to p38 and EGFR inhibitors. This suggests that targeting oncogenic KRAS by itself will not be sufficient treatment, but may require the combination of anti-KRAS strategies with other targeted drugs.

The effect of the mitogen-activated protein kinase kinase (MEK) inhibitor selumetinib (AZD6244) on the efficacy of docetaxel has been determined in a genetically engineered mouse model of KRAS-mutant lung cancers. Concomitant loss of either the gene that encodes tumor protein 53 (Tp53) or the gene that encodes liver kinase B1 (Lkb1; also known as serine/threonine kinase-11 [Stk11]) markedly impaired the response of KRAS-mutant cancers to docetaxel monotherapy. However, the addition of selumetinib provided substantial benefit
for mice with lung cancer caused by *KRAS* or *KRAS* and *Tp53* mutations. However, mice with *KRAS* and *Lkb1* mutations had primary resistance to this combination therapy [10]. This suggests that in addition to the *KRAS* mutation, is relevant to know any additional underlying mutations.

Using cell-based compound screening coupled with genetic lesion identification, it was shown that *KRAS* mutations confer enhanced heat-shock protein-90 tumor dependency *in vitro* and in mouse model systems [11]. In small interfering RNA studies in lung cancer cell lines, it was found that a RAS pathway signature is a better measure of dependence on RAS than *KRAS* mutation status [12]. A synthetic lethal interaction between *KRAS* and STK-33 has also been shown (i.e. STK-33 activity is required in mutant *KRAS*-driven tumors) [13]. Interestingly, STK-33 functions through inhibition of apoptosis via ribosomal protein S6 kinase β1 (S6K1)-induced inactivation of the death agonist Bcl2 antagonist of cell death (BAD) in mutant *KRAS*-dependent cells. STK-33 expression alone does not appear to be sufficient for tumor initiation and maintenance.

Micro-RNA regulation of KRAS

It has been reported that *KRAS* is inversely regulated by the microRNA (miR) precursor let-7a [14], miR-18a [15], and miR-96 [16]. The oncogenic miR-21 has also been found to regulate *KRAS*-dependent lung tumorigenesis [17]. Recently, it has been shown that miR-622 inhibits the growth of 16HBE-T cells (a malignant transformation of a human bronchial epithelial cell line) by targeting *KRAS* and enhancing the anti-carcinogenic effect of resveratrol [18]. Rational therapies that target the RAS pathways could potentially inhibit tumor growth, survival, and spread.

The RAS pathway is activated in a greater number of NSCLC cell lines than those that have been found to have *KRAS* mutations. Analysis of the mutations in these *KRAS* wild-type cell lines might expand the population of RAS-pathway-activated tumors. Preclinical studies have also demonstrated that integrated genomic and proteomic analyses can be used to identify targeted treatments for RAS-pathway-activated tumors. Although these preclinical discovered targeted therapies look promising, the therapeutic effect in the clinical setting remains to be determined.
Chapter 2

KRAS as a prognostic biomarker

In 1990, KRAS mutational status was identified by Slebos et al. as a negative prognostic marker in patients with early-stage NSCLC after complete resection [19]. In this study, 19 of 69 patients (27.5%) had a KRAS mutation. The rates of disease-free survival and overall survival (OS) were significantly worse in patients with a KRAS mutation (p=0.038 and p=0.002, respectively). Since then, a variety of studies have prospectively investigated the prognostic role of KRAS mutations in patients with NSCLC (Table 1). In a randomized clinical trial, 184 patients with resected stage II and IIIA NSCLC were assigned to adjuvant radiotherapy with or without chemotherapy [20]. Forty-four (23.9%) of these patients had a KRAS mutation. The median length of OS in the patients with a KRAS mutation was 30 months (95% confidence interval [CI] 34–64 months) compared with 42 months (95% CI 34–64 months) in patients with wild-type KRAS (wt-KRAS; p=0.38). No differences in progression-

<table>
<thead>
<tr>
<th>Author [ref]</th>
<th>Stage</th>
<th>Histology</th>
<th>Number of patients</th>
<th>KRAS mutant tumors (%)</th>
<th>Prognostic significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slebos et al. 1990 [19]</td>
<td>I-IIla</td>
<td>Adenocarcinoma</td>
<td>69</td>
<td>27.5</td>
<td>Negative</td>
</tr>
<tr>
<td>Sugio et al. 1992 [50]</td>
<td>I-IV</td>
<td>Adenocarcinoma</td>
<td>115</td>
<td>15.7</td>
<td>None</td>
</tr>
<tr>
<td>Silini et al. 1994 [51]</td>
<td>I-IV</td>
<td>Adenocarcinoma</td>
<td>109</td>
<td>30.3</td>
<td>None</td>
</tr>
<tr>
<td>Rosell et al. 1993 [52]</td>
<td>I-IV</td>
<td>All</td>
<td>275</td>
<td>20.7</td>
<td>Negative</td>
</tr>
<tr>
<td>Fukuyama et al. 1997 [53]</td>
<td>I-IV</td>
<td>All</td>
<td>162</td>
<td>6.9</td>
<td>Negative</td>
</tr>
<tr>
<td>Siegfried et al. 1997 [25]</td>
<td>I-IV</td>
<td>Adenocarcinoma</td>
<td>181</td>
<td>31.5</td>
<td>None</td>
</tr>
<tr>
<td>Schiller et al. 2001 [20]</td>
<td>II-IIla</td>
<td>All</td>
<td>184</td>
<td>24</td>
<td>None</td>
</tr>
<tr>
<td>Broermann et al. 2002 [54]</td>
<td>III</td>
<td>All</td>
<td>28</td>
<td>46</td>
<td>None</td>
</tr>
<tr>
<td>Sasaki et al. 2007 [21]</td>
<td>I-IV</td>
<td>All</td>
<td>190</td>
<td>11.1</td>
<td>Negative</td>
</tr>
<tr>
<td>Scoccianti et al. 2012 [22]</td>
<td>I-III</td>
<td>All</td>
<td>249</td>
<td>18.5</td>
<td>None</td>
</tr>
</tbody>
</table>
free survival (PFS) were observed. In patients with N1 disease, those with wt-KRAS had a significantly better median length of OS compared with patients who had KRAS mutations (45.2 vs. 23.6 months; p=0.02) [20].

In a Japanese study, tissue from 195 patients with resected NSCLC was analyzed for mutational status. Twenty-one of 190 patients (11.1%) had a KRAS mutation. More advanced-stage patients (stage II–IV, 13 of 73 patients) had KRAS mutations than early-stage patients (eight of 117 patients; p=0.019). Patients with a KRAS mutation had a significantly worse survival rate than those with wt-KRAS (p=0.001). Despite its higher prevalence in patients with a more advanced stage of NSCLC, KRAS mutation remained an independent prognostic factor (p=0.021) [21].

The most recent study recruited patients with surgically resected early-stage lung cancer. Overall, 46 of 249 (18.5%) patients had a KRAS mutation. KRAS mutational status was not associated with prognosis (hazard ratio [HR] 1.3, 95% CI 0.82–2.06; p=0.26). However, patients with concurrent TP53 and KRAS mutations had a poorer prognosis (HR 3.26, 95% CI 1.07–9.90; p=0.038), although few patients had both mutations [22].

In a meta-analysis of 53 studies, patients with NSCLC with a KRAS mutation had a worse survival than those with NSCLC without a KRAS mutation (HR 1.40, 95% CI 1.18–1.65) [23]. In those with adenocarcinoma, the HR was 1.50 (95% CI 1.26–1.80). Unfortunately, there was no correction for performance status and stage of disease as prognostic confounders, which therefore precludes a definite conclusion. One study described differences in survival between patients with different types of KRAS mutation [24]. In this study, lung cancer tumor tissue from 173 patients was screened after lung resection, and 43 patients were found to have a KRAS mutation (24.9%). KRAS mutational status overall was not related to poor survival (p=0.96). However, when the investigators looked at different types of KRAS mutation there was a near-significant trend for shorter survival in the group with G12V and G12R mutations (n=13; p=0.07) compared with the wild-type group. Patients with G12D (n=9) had a trend towards better survival than the wild-type patients (p=0.06). Because of the small numbers, a larger retrospective study with 181 patients with resected lung adenocarcinoma was performed by the same investigators [25]. In 57 patients (31.5%) a KRAS mutation was detected. Again, in this larger cohort of patients, KRAS mutational status was not significantly associated with survival (p=0.64). Breakdown by types of KRAS mutation revealed G12V to display a better survival than other types, contrary to the previous study.
In summary, the prognostic role of \textit{KRAS} mutation is not clear because of the conflicting outcomes obtained in the studies discussed. These studies were difficult to compare because of selection bias and variation in disease stage and histology. Whether some types of \textit{KRAS} mutation have greater prognostic value than others could not be determined because of conflicting data.

\textbf{Table 2. \textit{KRAS} mutational status and response to chemotherapy in patients with NSCLC}

<table>
<thead>
<tr>
<th>Author [ref]</th>
<th>Stage</th>
<th>Chemotherapy</th>
<th>Histology</th>
<th>Number of patients</th>
<th>\textit{KRAS} mut (%)</th>
<th>Response rate</th>
<th>Median OS (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsao et al. 2007[26]</td>
<td>Ib-II</td>
<td>Cisplatin/ vinorelbine (adjuvant)</td>
<td>All</td>
<td>450</td>
<td>26</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Rodenhuis et al. 1997[27]</td>
<td>III-IV</td>
<td>Mesna, ifosfamide, carboplatin and etoposide</td>
<td>Adeno-carcinoma</td>
<td>62</td>
<td>26</td>
<td>19%</td>
<td>26%</td>
</tr>
<tr>
<td>Eberhard et al 2005[55]</td>
<td>IIIb-IV</td>
<td>Carboplatin/paclitaxel</td>
<td>All</td>
<td>264</td>
<td>21</td>
<td>23%</td>
<td>26%</td>
</tr>
<tr>
<td>Kalikaki et al. 2010[28]</td>
<td>IV</td>
<td>Several</td>
<td>All</td>
<td>133</td>
<td>23</td>
<td>25%</td>
<td>26.5%</td>
</tr>
</tbody>
</table>

Abbreviations: mut: mutation; wt: wild type; NA: not applicable; NR: not registered; NS: not significant; OS: overall survival

\textbf{Clinical value of \textit{KRAS} mutational status and prediction of standard chemotherapy response}

The results of some key studies of \textit{KRAS} mutational status and response to chemotherapy in NSCLC are summarized in \textbf{Table 2}. In a randomized Phase III study by Tsao et al., a total of 482 patients with NSCLC were recruited to determine the effect of adjuvant vinorelbine plus cisplatin versus observation [26]. In 117 of 450 patients (26.0%) a \textit{RAS} mutation was found, equally divided amongst both groups. The median length of survival in patients with wt-\textit{RAS} was reduced in the observation arm compared with that in the patients who were treated with chemotherapy (HR 0.69, 95% CI 0.49–0.98; \(p=0.03\)). \textit{RAS}-mutated patients appeared to gain no benefit in terms of survival from adjuvant chemotherapy (HR 0.95, 95% CI 0.53–1.71; \(p=0.87\)). Although wt-\textit{RAS} patients appeared to derive greater benefit from adjuvant
KRAS Mutated Non-Small Cell Lung Cancer: A Distinct Disease Entity?

chemotherapy than patients with mutant RAS, this was not statistically significant (p=0.29) [26].

In a prospective trial to determine if KRAS mutations should routinely be determined in patients with lung adenocarcinoma, 62 patients with inoperable stage III or IV NSCLC were treated with mesna, ifosfamide, carboplatin, and etoposide [27]. For this study, biopsy material had to be assessable to determine KRAS mutational status. Sixteen patients (25.8%) had a KRAS mutation. In 19% of patients with a KRAS mutation, there was a response to treatment. In the group with wt-KRAS, 26% had a response to chemotherapy. This difference in response rate was not significant (p=0.49). The median length of PFS was 5 months and 4 months (p=0.29) in patients with wt-KRAS and KRAS mutations, respectively, with corresponding median OS times of 9 months and 8 months (p=0.22). This well-designed study suggests that KRAS mutational status has no clinical significance in chemotherapy treatment of patients with an advanced lung adenocarcinoma.

In the most recent study, 162 patients with stage IV NSCLC were treated with first-line chemotherapy [28]. Thirty of 133 patients (22.6%) had a KRAS mutation. A total of 96 patients (59.2%) received platinum-based chemotherapy. Evaluation of the whole study population found no difference in response to chemotherapy between patients with mutated KRAS and those with wt-KRAS (25.0% vs. 26.5%; p=0.87). In addition, no difference was found in patients who were treated with platinum-based chemotherapy (29.2% vs. 30.2%, respectively; p=0.95). Time to progression (TTP) was 4.2 months versus 4.7 months (p=0.42), and the length of OS was 14.5 months versus 18.5 months (p=0.52).

Only a few studies have investigated the predictive value of KRAS mutations in patients with NSCLC who were treated with chemotherapy alone. Considering these data, KRAS mutation seems to not be of predictive value in treatment of NSCLC with (platinum-based) chemotherapy.

Predictive value of KRAS mutational status in EGFR-TKI treatment

The results of key studies of KRAS mutational status and response to EGFR tyrosine kinase inhibitors (TKIs) are summarized in Table 3. In a retrospective study on the predictive value of EGFR mutation and KRAS mutation, patients with NSCLC who were treated with gefitinib or erlotinib were studied [29]. A KRAS mutation was identified in 16 of 70 patients (22.8%). The presence of a KRAS mutation was significantly associated with a lack of response to TKI treatment. All 16 patients with KRAS mutations experienced progressive disease as the best response to treatment with EGFR-TKIs, whereas seven of the 54 patients with wt-KRAS had a
Table 3. KRAS mutational status and response to EGFR tyrosine kinase inhibitors in NSCLC patients

<table>
<thead>
<tr>
<th>Study</th>
<th>Therapy</th>
<th>Nr. Of patients</th>
<th>KRAS mut (%)</th>
<th>Response</th>
<th>KRAS mut</th>
<th>KRAS wt</th>
<th>KRAS wt and EGFR wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pao et al. 2005 [56]</td>
<td>Gefitinib/erlotinib</td>
<td>59</td>
<td>15</td>
<td>0/9</td>
<td>17/51</td>
<td>5/22</td>
<td>p=0.02</td>
</tr>
<tr>
<td>Han et al 2006 [57]</td>
<td>Gefitinib</td>
<td>69</td>
<td>16</td>
<td>0/9</td>
<td>16/60</td>
<td>8/45</td>
<td>p=0.10</td>
</tr>
<tr>
<td>Giaccone et al. 2006 [58]</td>
<td>Erlotinib</td>
<td>29</td>
<td>35</td>
<td>0/10</td>
<td>4/15</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Massarelli et al. 2007 [29]</td>
<td>Gefitinib/erlotinib</td>
<td>70</td>
<td>23</td>
<td>0/16</td>
<td>7/54</td>
<td>2/47</td>
<td>p=0.04</td>
</tr>
<tr>
<td>Miller et al. 2008 [59]</td>
<td>Erlotinib</td>
<td>101</td>
<td>18</td>
<td>0/18</td>
<td>6/20</td>
<td>5/44</td>
<td>p<0.01</td>
</tr>
<tr>
<td>Zhu et al. 2008 [60]</td>
<td>Erlotinib</td>
<td>118</td>
<td>17</td>
<td>1/20</td>
<td>10/98</td>
<td>6/83</td>
<td>p=0.69</td>
</tr>
<tr>
<td>Marchetti et al. 2009 [30]</td>
<td>Gefitinib/erlotinib</td>
<td>83</td>
<td>36</td>
<td>0/30</td>
<td>9/53</td>
<td>2/33</td>
<td>p=0.004</td>
</tr>
<tr>
<td>Douillard et al. 2010 [61]</td>
<td>Gefitinib</td>
<td>114</td>
<td>18</td>
<td>0/20</td>
<td>9/94</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Tiseo et al. 2010 [62]</td>
<td>Gefitinib</td>
<td>63</td>
<td>11</td>
<td>0/7</td>
<td>14/56</td>
<td>5/45</td>
<td>p=0.33</td>
</tr>
<tr>
<td>Schneider et al. 2008 [63]</td>
<td>Erlotinib</td>
<td>114</td>
<td>15</td>
<td>0/11</td>
<td>7/78</td>
<td>5/74</td>
<td>p=0.59</td>
</tr>
<tr>
<td>Ludovini et al. 2011 [64]</td>
<td>Gefitinib/erlotinib</td>
<td>162</td>
<td>7</td>
<td>0/11</td>
<td>54/151</td>
<td>25/109</td>
<td>p=0.03</td>
</tr>
<tr>
<td>Hirsch et al. 2007 [65]</td>
<td>Gefitinib</td>
<td>138</td>
<td>26</td>
<td>3/36</td>
<td>19/102</td>
<td>8/60</td>
<td>p=0.24</td>
</tr>
<tr>
<td>Felip et al. 2008 [66]</td>
<td>Erlotinib</td>
<td>39</td>
<td>18</td>
<td>0/7</td>
<td>3/39</td>
<td>1/34</td>
<td>NC</td>
</tr>
<tr>
<td>Zucali et al. 2008 [67]</td>
<td>Gefitinib</td>
<td>49</td>
<td>31</td>
<td>0/15</td>
<td>3/34</td>
<td>0/30</td>
<td>p=0.54</td>
</tr>
<tr>
<td>Jackman et al. 2009 [68]</td>
<td>Gefitinib/erlotinib</td>
<td>171</td>
<td>24</td>
<td>0/41</td>
<td>36/130</td>
<td>4/83</td>
<td>p<0.001</td>
</tr>
</tbody>
</table>

Abbreviations: wt: wild type, mut: mutation, NS: not significant, NC: not calculated
complete response to treatment (p=0.04). Patients with a \textit{KRAS} mutation had a shorter TTP (1.7 months vs. 2.9 months; p=0.0025); they also had a shorter median length of OS, although this was not significant (5.0 months vs. 9.4 months; p=0.62). Another retrospective study evaluated treatment with an EGFR-TKI in 83 patients with lung adenocarcinoma [30]. This study used two methods to determine \textit{KRAS} mutational status: direct sequencing and mutant-enriched (ME) sequencing. ME sequencing was found to be the most sensitive method in this study. Thirty of the 83 patients (36.1%) had a \textit{KRAS} mutational status as detected by ME sequencing compared with 16 patients who had mutations detected by direct sequencing. None of these 30 patients responded to erlotinib or gefitinib compared with nine of 53 patients with wt-\textit{KRAS} (p=0.004). In a multivariate regression analysis, \textit{KRAS} mutation was found to be an independent predictor of poor disease control (p=0.019). Patients with a \textit{KRAS} mutation also had significantly poorer PFS (HR 1.87, 95% CI 1.08–3.24; p=0.02) and OS (HR 2.29, 95% CI 1.23–4.25; p=0.01) outcomes.

The most recent study prospectively evaluated the role of biomarkers in predicting clinical outcomes with erlotinib treatment, using data from the SATURN (Sequential Tarceva in Unresectable NSCLC) trial [31]. This was a Phase III, placebo-controlled trial evaluating maintenance treatment with erlotinib in patients with non-progressive disease following first-line platinum-doublet chemotherapy. Ninety of 493 patients (18.3%) had a \textit{KRAS} mutation. \textit{KRAS} mutational status in the placebo arm was a significant negative prognostic factor for PFS (HR 1.50, 95% CI 1.06–2.12; p=0.020), but not for OS (HR 1.31, 95% CI 0.90–1.90; p=0.152). Erlotinib provided no PFS benefit in patients with a \textit{KRAS} mutation (HR 0.77, 95% CI 0.50–1.19; p=0.225). The interaction between treatment and \textit{KRAS} mutational status was not significant (p=0.95), indicating that erlotinib had no differential effect on PFS [31].

A meta-analysis of 22 studies has described the relationship between \textit{KRAS} mutation and resistance to EGFR-TKI treatment. \textit{KRAS} mutations were found in 231 of 1470 patients (15.7%). The objective response rates for patients with a \textit{KRAS} mutation and those with wt-\textit{KRAS} were 3% and 26%, respectively (relative risk 0.29, 95% CI 0.18–0.47; p=0.01) [32]. This meta-analysis supports the association between \textit{KRAS} mutation and a lack of response to EGFR-TKI therapy.

In summary, \textit{KRAS} mutation seems to be a predictor for refractory effect to EGFR-TKIs. The studies discussed in this section show that patients with \textit{KRAS} mutations did not respond to erlotinib or gefitinib. In Table 3, the rate of response in patients with both wt-\textit{KRAS} and wt-
EGFR is also listed. The findings suggest that this group of patients is not significantly different from patients with a KRAS mutation.

Potential use of RAS or downstream pathway members as target(s) for inhibitory treatment

Several clinical studies report results on targeted treatment in KRAS-mutated NSCLC. In the BATTLE (Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination) trial, 158 patients with advanced NSCLC who had failed previous treatment were randomized to treatment with erlotinib, vandetanib, erlotinib plus bexarotene, or sorafenib according to mutational status [33]. Patients with a KRAS mutation receiving sorafenib had a disease control rate of 79% (11 of 14 patients). Sorafenib had the highest efficacy in patients with KRAS-mutated disease. Other treatments were less successful in patients with a KRAS mutation. This suggests that patients with a KRAS mutation may benefit from treatment with sorafenib, although the trial result was not significant. The rationale for this success of sorafenib in patients with a KRAS mutation is that sorafenib inhibits, amongst other molecules, CRAF and BRAF, which are downstream effectors of RAS. Another study also showed activity of sorafenib in patients who had NSCLC with a KRAS mutation, but the number of KRAS-mutated patients was small [34]. Recently, our group performed a Phase II study of sorafenib in 57 patients with a KRAS mutation. Sorafenib was found to be active in these patients, with a disease control rate at 6 weeks of 52.6%, but poor outcomes [35]. To increase the effectiveness of treatments in these patients, combination therapy might be a possibility.

In patients with leukemia, two studies have described a paradoxical activation of the RAF/MEK/extracellular-regulated kinase (RAF/MEK/ERK) pathway with weak RAF inhibitors (e.g. imatinib and dasatinib). These studies conclude that when RAS is activated, the RAF/MEK/ERK pathway is paradoxically hyperactivated when RAF is inhibited [36,37]. It is not clear if these results are also applicable in patients with lung cancer, but this finding could have major implications for the long-term treatment of (lung) cancer patients with a KRAS mutation.

Two promising agents for the treatment of KRAS-mutated NSCLC are selumetinib (a MEK inhibitor) and ridaforolimus (a mammalian target of rapamycin [mTOR] inhibitor). In a double-blind, Phase II study, 87 patients who had NSCLC with a KRAS mutation were randomized to receive docetaxel or docetaxel and selumetinib. The primary endpoint (OS) was not reached, but the response rate and PFS rate were significantly improved for patients who were treated with selumetinib and docetaxel compared with docetaxel alone [38]. A
Phase II study has reported a prolonged PFS in patients with KRAS-mutant NSCLC who had stable disease after 8 weeks of treatment with ridaforolimus and continued treatment with ridaforolimus compared with those who received placebo [39]. These studies explore novel treatment possibilities for patients who have NSCLC with a KRAS mutation. Concurrent inhibition of the RAS/RAF pathway and the phosphoinositide 3-kinase (PI3K)/mTOR pathway may be synergistic. Phase I studies in patients with renal cell and hepatocellular cancer have shown that the combination of everolimus and sorafenib was active and tolerable [40,41]. Phase I studies with everolimus and sorafenib are ongoing in patients with lung cancer [42]. Other Phase studies are also focusing on combination treatment with NVP-BEZ235 (a dual PI3K/mTOR inhibitor) and an inhibitor of the RAF/MEK/ERK pathway. Future clinical studies should evaluate whether concurrent inhibition of the PI3K pathway and RAS/RAF pathway is beneficial for patients who have NSCLC with a KRAS mutation. It can be expected that combination therapy will enhance toxicity.

Recently, there has been renewed attention towards determining the effects of different types of KRAS mutation. There are suggestions that the different kinds of KRAS mutations react differently to treatment [43]. G12C and G12V mutations have been found to be more aggressive than other type of KRAS mutations [44]. In addition, it has been reported that patients with KRAS mutations in codon 13 have a poorer PFS and OS compared with those who have a codon 12 KRAS mutation [45]. In patients with colorectal cancer it appears that those with a G13D mutation have a poorer response to treatment than patients with other KRAS mutations [46,47]. This raises the interesting question of whether the types of KRAS mutation in patients with lung cancer have different contributions to tumorigenesis. It is difficult to answer this question because no studies have been published that have tried to correlate types of KRAS mutation and other known driver mutations [48].

Thus, KRAS mutations have the potential to be successfully targeted downstream. Combination therapy has to be the focus of future research, although toxicity may be a problem. Emerging data suggest that the types of KRAS mutation are not all alike. Future clinical trials in patients with a KRAS mutation should analyze the types of KRAS mutation because data on the effect of types of KRAS mutation on response to treatment and survival are presently scarce.
Chapter 2

Conclusion
To answer the question of whether or not KRAS-mutated NSCLC forms a distinct disease entity, as posed in the introduction, several factors have to be taken into consideration. In terms of outcome and response, the answer seems to be "no". It appears that KRAS mutation is not a marker for prognosis, nor does it predict response to chemotherapy. In spite of the latter finding, KRAS mutation is a predictor of lack of benefit from treatment with an EGFR-TKI. However, Canadian consensus recommendations, for example, state that testing of KRAS mutation is not required when selecting treatment [49].

With respect to whether or not RAS or downstream pathway components might be a target(s) for inhibitory treatment, the answer seems to be "yes". Such targeted treatment in patients with a KRAS mutation has promise. The RAS/RAF signaling pathway is a promising therapeutic target given its central role in regulation of cell proliferation. Recent insights show that concurrent inhibition of both the RAS/RAF and PI3K/mTOR pathway will be more successful than single-target inhibition. There are many treatment options that have demonstrated a good outlook for patients with a KRAS mutation in early phase clinical trials.
References

Miller MS, Miller LD. RAS Mutations and Oncogenesis: Not all RAS Mutations are Created Equally. Frontiers in genetics 2012;2:100.

Chapter 2

