Chapter 2

Speedy delivery versus long-term objectives: How temporary teams and permanent departments coordinate timely project completion under political pressure.

2 This chapter is based on Van Berkel, F., Ferguson, J.E., & Groenewegen, P. "Speedy delivery versus long-term objectives: How temporary teams and permanent departments coordinate timely project completion under political pressure." Under (3rd round of) review at Long Range Planning.
ABSTRACT

In this study, we analyze how public projects are coordinated between temporary project teams and permanent departments in situations of time pressure. Time pressure can yield benefits to the realization of project goals by expediting project planning, coordination, and decision-making. However, time pressure can also magnify coordination challenges between the fast-paced activities and short-term orientation of temporary teams, and the slower paced, long-term strategic orientation of permanent departments. Through an in-depth case study of a large public infrastructure organization in the Netherlands, we identified that timely coordination of knowledge was required between projects and permanent departments, but was inhibited by the embeddedness of knowledge and a lack of transactive memory. Moreover, the public context of our study exposed how political priorities and pressures on project completion amplified time pressures and inhibited coordination even further. Our study advances understanding of coordination between project teams and slower-paced, permanent departments, by explaining the differentiated nature of transactive memory across organizational settings. We also extend understanding of inhibitors to public project realization by explaining how public and political pressure on public projects can ensure timely project completion, but at the same time can harm the long-term strategy of involved public organizations.
INTRODUCTION

Projects are emerging as popular forms of temporary organizing (Davison, Hollenbeck, Barnes, Sleesman, & Ilgen, 2012). The relative temporariness of projects (Lundin & Söderholm, 1995) makes them attractive in terms of manageability: when the project ends, the team disbands (Meyerson, Weick, & Kramer, 1996). Due to their temporariness and time limitations, projects have to execute a number of pre-defined tasks toward stipulated deadlines and goals that are formulated at the start (Gersick, 1988; Turner & Müller, 2003). For project teams, the limited availability of time functions as an important regulator for how work is planned and coordinated (Janicki & Bartel, 2003; Lundin & Söderholm, 1995; Nordqvist et al., 2004). For example, working towards deadlines forces project teams to break down projects into subgoals and different courses of actions, to distribute work, and to estimate time for different phases of the project (Söderlund, 2010; Waller, Conte, Gibson, & Carpenter, 2001). Planning these aspects of projects allows project teams to coordinate effectively (Isenberg, 1981; Janicki & Bartel, 2003) and to accelerate information processing (Kerstholt, 1994) and decision-making toward goal achievement (Perlow, Okhuysen, & Repenning, 2002).

Deadlines are also critical for coordination between projects and their environment (Lindkvist et al., 1998). This is important to note, because projects are increasingly seen as an integral part of their wider (inter)organizational and political context (Dille & Söderlund, 2011; Engwall, 2003; Grabher, 2002, 2004; Shenhar et al., 2001). Logically, project teams have to engage in multiple external relations in order to exchange knowledge and align objectives. In so doing, project teams deal with a diversity of involved actors that affect or are affected by project outcomes (Dubois & Gadde, 2002; El-Gohary et al., 2006; Haas, 2006). These external relations are all the more salient in public projects, which are the focus of our research. In public projects, political stakeholders play a significant role in project realization, but they are not directly involved with project actions and decisions (Kickert et al., 1997; Klijn & Teisman, 2003; Waterman & Meier, 1998). Thus, for involved stakeholders, deadlines and milestones can function as time-based controls that enable coordination, joint collaboration, and that ensure the timely completion of projects (Dahlgren & Söderlund, 2001; Labianca, Moon, & Watt, 2005; Lindkvist et al., 1998).

Deadlines and perceived time constraints can also cause pressure for project members (Seers & Woodruff, 1997). In turn, these time pressures can complicate the integration of project outcomes into more permanent, long-term oriented structures within organizations (Hobday, 2000; Lindkvist et al., 1998; Sydow et al., 2004; Thomas, Fugate, & Koukova,
2011). For instance, studies on project teams have shown that working under increased time pressures often turns into a trade-off between functionality and time, with the emphasis on timely completion, but at the expense of the long-term strategy of organizations (e.g., Brooks Jr, 1995; Lindkvist et al., 1998; Shenhar et al., 2001). This is particularly noticeable with deadlines approaching (Gersick, 1988) or when project teams face a transition in project phase (Ancona & Waller, 2007; Waller et al., 2002). For example, when projects move from the pre-implementation phase to actual project implementation, project members have to set themselves up to accomplish a different type of work, and therefore other preparatory activities need to be completed. Throughout such phases, project teams have to adhere to different timing norms (Dille & Söderlund, 2011), causing an increase in tempo and timing of activities and decision-making. Consequently, coordination problems arise where project teams and slower-paced permanent departments fail to mutually adjust or synchronize the timing and tempo of their activities (Söderlund, 2002, 2010) or when projects run short of time to coordinate their actions with other departments (Lindkvist et al., 1998; Waller et al., 2002). This potentially limits the overall capacity of organizations and their permanent departments to pursue long-term, strategic goals (Shenhar et al., 2001).

Despite evidence of how time pressures affect projects, and particularly the coordination between projects and permanent departments, it remains unclear what the inhibitors or enablers of coordination are under time pressure, and how these actually work. Therefore, in this paper we analyze the relationship between time pressures and coordination, guided by the research question:

How do temporary project teams and permanent departments coordinate public projects in situations of time pressure?

We study this question in the context of public projects, where time pressures are all the more prominent due to political stakeholder interests and the public visibility of project success or failure.

Prior research has usefully exposed several aspects of the political context that might affect project success (Dahlgren & Söderlund, 2001; Dille & Söderlund, 2011; Engwall, 2003; Kadefors, 1995). This research shows, for instance, that project teams performing publicly visible projects are likely to encounter significant pressure from their political stakeholders in terms of project activities and decisions, due to the accountability of
these stakeholders regarding project outcomes (Aaltonen & Sivonen, 2009; Forrer et al., 2010; Ring & Perry, 1985). However, it remains unclear how such political pressures influence coordination between project teams and permanent departments under time pressure. In order to answer this research question, we conducted a case study comprising of participant observation, descriptive survey research, and interviews, set in a large municipal infrastructure organization in the Netherlands. Before explaining our case study and findings, we first introduce the concepts of time pressure and coordination and their expected interrelation.

THEORETICAL BACKGROUND

Time pressures and the productivity of project activities
A project is “a temporary organization to which resources are assigned to undertake a unique, novel, and transient endeavor managing the inherent uncertainty and need for integration in order to deliver beneficial objectives of change” (Turner & Müller, 2003, p. 7). Thus, projects are a useful form of temporary organizing (Davison et al., 2012; Lindkvist et al., 1998; Lundin & Söderholm, 1995; Packendorff, 1995), which enables organizations to integrate actors and their knowledge from multiple disciplines to resolve novel and unique work (Bresnen, Goussevskaia, & Swan, 2004; Enberg et al., 2006; Huang & Newell, 2003). An important feature that distinguishes project teams from conventional teams or departments is their temporariness (Lundin & Söderholm, 1995; Sydow et al., 2004; Turner & Müller, 2003). Temporariness means that project teams have a limited number of defined tasks which they have to perform within clear time limits (Lundin & Söderholm, 1995). A temporary project team then forms around the pre-defined tasks and the time available, focusing on performing these in a sequential manner (i.e., in different stages or phases), toward clearly stipulated deadlines (Hobday, 2000). Project teams thus have to organize their actions within limited time, moving towards pre-defined goals and deadlines, and, consequently, limiting the amount of distraction from other, unrelated tasks. For project teams, this way of working has important implications for project planning, coordination, and decision-making.

Deadlines regulate and structure the work of project teams through the breakdown of projects into interim goals, different courses of actions, and time anchoring (Nordqvist et al., 2004), which can enhance productivity and team performance. For example, the
limited availability of time can provide teams with the ability to pace activities toward team outcomes (Ancona & Chong, 1996; Gersick, 1988, 1994; Waller et al., 2002). Individuals who perceive time urgency or pressure are likely to have more time awareness, to perceive a need to schedule, and to have better focus on goal achievement (Waller et al., 2001). The increase in attention to goals as deadlines near, can motivate teams to increase their task performance activities to complete their work in time (Lim & Murnaghan, 1994).

Time pressures also affect coordination, which is defined as “managing interdependencies between activities” (Malone & Crowston, 1994, p. 90) or the integration of organizational work (Faraj & Xiao, 2006). In other words, coordination is about who is going to do what, when, and with whom. Studies have shown that time pressure can help teams to coordinate their work more effectively (Gersick, 1988; Isenberg, 1981; Janicki & Bartel, 2003). For example, Gersick (1988) found that temporal cues as a result of time pressures trigger an evaluation of how groups are, or should be, coordinating their activities. Furthermore, Janicki and Bartel (2003) show that time pressures cause the formation of time awareness norms, which enable teams to better plan and coordinate their activities. Under such circumstances, time awareness norms cause team members to reallocate resources and plan activities in a short period of time, increasing synchronization and adjustment between team members’ activities.

Thus, for a temporary project team, time is always running out: it is finite from the start and therefore most project actions are triggered by time in relation to deadlines. This can generate a predominant sense of urgency within project teams (Gersick, 1988; Waller et al., 2002) to proceed “like a moving train at high speed towards the end station without any unwanted stops” (Lundin & Söderholm, 1995, p. 448). Such feelings of urgency can motivate individuals to quickly make decisions in order to complete tasks and goals within deadlines; studies have shown a general speed up of information processing and use when time pressure increases (Eisenhardt, 1989; Kerstholt, 1994). However, high levels of time pressure and the necessity for quick decision-making can also negatively affect projects and their external relations. Team members working under pressure often take shortcuts that are solely motivated by a desire to stay on track. These shortcuts are not necessarily in the best interest of the project (Austin, 2001) or the coordination between projects and their environment, as we shall explain in the next section.
Time pressures and the coordination between projects and their environment

Despite their decentralized way of working, projects still have to manage multiple interdependencies with involved actors from their organizational and political environment. For example, they have to align project actions and decisions with more permanent departments (Grabher, 2002), with the strategic goals of parent organizations (Blomquist & Packendorff, 1998; Engwall, 2003; Sydow et al., 2004), or with the objectives of political stakeholders (Aaltonen & Sivonen, 2009; Olander, 2007; Olander & Landin, 2005). Increased time pressures with project deadlines approaching or with projects moving into new phases can have both positive and negative consequences for the manner in which coordination unfolds between projects and actors in their environment.

Deadlines can be positive, because they can function as time-based control mechanisms. Deadlines, milestones, or other time-related objectives are often communicated and controlled within public settings, prompting everybody involved to see or monitor who promised what and what is being achieved within specific timeframes (Lindkvist et al., 1998). In that sense, deadlines can help synchronize the objectives of stakeholders with project activities and outcomes. This can be particularly relevant for political principals, who are accountable for project outcomes but who are responsible for monitoring and measuring project performance with little information about the performance of projects (Jensen et al., 2006). However, time pressures that coincide with stipulated deadlines can also be detrimental to the coordination between projects and their environment, which is partly related to the comprehensiveness of decision-making.

Decision-making calls for evaluation of a situation, challenge, or problem and, consequently, the integration of knowledge towards plausible solutions (Brodbeck, Kerschreiter, Možíš, & Schulz-Hardt, 2007). Due to time pressures, project members will experience more difficulties than regular organizational operators in making deliberate choices within their limited cognitive abilities (e.g. Lindkvist et al., 1998; Van Marrewijk, Clegg, Pitsis, & Veenwijk, 2008). This is, to a large extent in urgent circumstances, because they will likely lack the time to pay attention to solutions from other parts of the organization that are often not directly available (Levinthal & March, 1993; March, 1978; Zika-Viktorsson et al., 2006). Thus, time pressures can constrain decision-making in project teams, which is often further aggravated when input from other departments is required. Key coordination challenges may emerge in case input from more slow-paced, permanent departments is required.
Dille and Söderlund (2011) identified that a key challenge lies in the fact that projects and other involved departments can adhere to conflicting norms concerning the timing and tempo of their activities. Timing norms are seen as important organizing elements that govern activities in the sense that they impose implicit cycles and rhythms of behavior, and explicit schedules and deadlines to which actors have to respond (Ancona, Goodman, Lawrence, & Tushman, 2001). For example, in contrast to project teams with fast-paced activities and decision-making, permanent departments with responsibilities for ongoing maintenance are characterized to a lesser degree by time pressures and urgency, and therefore have a much slower work pace (Dahlgren & Söderlund, 2001; Söderlund, 2010). Subsequently, the problem of pacing arises (Ancona & Waller, 2007; Gersick, 1994) in situations of time pressure when teams and/or departments fail to mutually adjust or synchronize the timing and tempo of their activities and decision-making (Dahlgren & Söderlund, 2001). In turn, this can result in frenetic and complex phases of coordination (Perlow, 1999). Furthermore, the effectiveness of coordination under these circumstances largely depends on the ability and availability of time amongst individuals to coordinate their activities with others parts of the organization (Söderlund, 2002). When individuals are limited in their time, which is often the case when project deadlines approach, coordination will be constrained.

Based on these established findings, we extrapolate that problems of timely coordination are likely to occur between project teams and permanent departments, because they differ in perceived time pressures and the timing and tempo of activities. In order to understand and explain the timeliness of coordination between these forms of organizing, we unpack both dimensions of time pressure and coordination. In our research, we specifically explore the context of public projects. In these cases, time pressures are all the more salient due to significant pressure from political stakeholders, who are accountable for project success or failure, as we shall explain in the next section.

The political context of projects
Recently, research has started to address the embeddedness of projects in organizational and political contexts. For example, Engwall (2003) illustrates how projects are linked to their historical context, simultaneous activities in other projects or departments, organizational plans, and the procedures and norms of their surroundings. Other research has explicitly referred to different aspects of projects’ political context and its implications for interior project processes and external project linkages (Dille & Söderlund, 2011;
Speedy delivery versus long-term objectives

Jones & Lichtenstein, 2008). For example, Dille and Söderlund (2011) argue that project teams are forced to maneuver their projects within political, public, or institutional environments. In such environments, the performance of projects involves considerable efforts of project teams to position themselves among powerful political stakeholders. In the current research we aim to extrapolate on these arguments, and consider the political context as a determining factor to the performance of projects and the relations between projects and their environment.

In this research, we particularly focus on the public scrutiny of infrastructure projects. Public scrutiny occurs when public projects attract intense or obtrusive forms of attention from citizens, other organizations, stakeholders, partners, board members, or regulators (Sutton & Galunic, 1995). As public infrastructure projects are often publicly very visible, these projects and the stakeholders concerned are more intensively exposed to public attention and pressures than actors in private sectors (Arnaoldi et al., 2004; Ring & Perry, 1985). Consequently, teams that carry out public projects often have to cope with turbulent political environments (Hahm et al., 2013), which can presumably affect the coordination between projects and their environment. To date, only limited attention has been devoted to the effects of scrutiny and political pressure on public projects and how this affects the coordination between projects and involved departments. Therefore, in this paper, we analyze how project teams and permanent departments coordinate public projects in situations of time pressure, and we include the political context in our analysis. We will first introduce our case study, and then explain our research methods in more detail, before showing the results of our study.

METHODS

Case study
In order to gather first-hand data about the details of coordination between projects and permanent departments, we performed a two-year case study within a large Dutch municipal public works department. Throughout the research period, the first author was involved in an organizational change program within this department. Thanks to his presence in the organization, he was able to observe managers and employees in their daily work setting and during specific (project) meetings, and to talk both formally and informally with numerous employees and managers. As part of the case study, the researcher
also participated in a project team responsible for one of the largest and most politically sensitive projects in the municipality for a period of nine months. During this period, he observed project meetings and conducted interviews with project members and (political) stakeholders. Through this research, we found that the public visibility of delayed municipal infrastructure projects generated public attentiveness and political involvement in projects aimed at timely project completion. This increased the extent to which projects experienced time pressure. Throughout the entire project, time pressure was as its greatest when projects shifted from the pre-implementation phase (preparation and planning) to the building phase, throughout project implementation, and particularly when deadlines for project completion approached. We found that when projects operated in situations of time pressure, this could generate an inward focus on goal achievement, at the expense of coordinating well with other parties in the project’s environment. To extend these findings, and to understand the coordination between temporary project teams and permanent departments, we subsequently conducted a descriptive survey and interviews, as we shall explain after we introduce the research setting.

Research setting
The public works department employs about six hundred people, organized across eleven sub departments aimed towards the preparation, realization, and maintenance of high-quality infrastructure work, in terms of both policy and project implementation. As part of our aim to develop in-depth understanding of how public infrastructure projects are coordinated between temporary project teams and permanent departments in the context of pressure on timely project completion, we set out to identify in what parts of the public works department these pressures influenced the quality of coordination between projects and other sub departments. Through our early observations and conversations, we found that coordination between temporary project teams and the asset management sub department proved particularly problematic, regardless of their shared focus on the same infrastructure objects. This intriguing discrepancy – significant overlap in focus, yet highly problematic coordination – guided our empirical choice towards a focus on the coordination between the asset management and project departments.

The project department is an administrative unit comprised of a flexible and varied constellation of department staff members, including engineers, project managers, project
assistants, planners, risk managers, communication advisors, and area managers. Once
plans are made to refurbish infrastructure objects or to develop new infrastructure, mem-
bers of the project department form temporary project teams that also involve other
partners, both public and private. Typically, between ten and fifty members are part of
a project team, and the teams generally span a limited period, ranging in our research
setting between one week for small projects up to eleven years for the realization of a
particularly large and complex project.

The asset management department comprises of a relatively stable group of ap-
proximately 120 staff members including asset managers, technical advisors, and service
engineers, responsible for the maintenance and sustainability of infrastructure objects for
their total life cycle. Employees from this department commonly execute routine (small)
maintenance work. When maintenance work exceeds a certain budget, renovation
projects are transferred to the projects department. When project teams have completed
infrastructure projects, responsibility for long-term maintenance of the objects is (again)
handled over to the asset management department. The expertise of the asset manage-
ment department is primarily related to specific infrastructure objects in the city and built
up through years of working on existing infrastructure objects, and is therefore relatively
stable and enduring.

For a fine-grained understanding of the coordination, we zoomed in on several projects
that involved both departments, in particular on the construction and delivery of a red
bridge. The development of this red bridge symbolizes the political dimension of these
kinds of governmental projects. Despite its modest size, the project was rather politi-
cally charged for the municipality: with its architecturally advanced design and bold red
color, it was destined to become a new, striking feature in the city landscape. Moreover,
it would connect a newly developed suburb with the old city center. The bridge’s official
opening, to be attended by municipal and national dignitaries, was planned far ahead.
Therefore, smooth and timely realization of the project was of great significance.

Data collection and analysis
Based on the first author’s earlier observations throughout the nine-month case study, we
were able to determine that project teams experienced pressures regarding timely project
completion. In some cases, this could be at the expense of coordination with other
involved actors, such as the asset management department. To structure these findings,
and to narrow down the most salient bottlenecks in the coordination between temporary
Chapter 2

project teams and the asset management department, we started with a descriptive survey. The survey yielded 111 responses from the asset management (n=67, response rate of 74%) and the project department (n=44, response rate of 52%). We used the relational coordination survey (Gittell, 2001), which measures coordination between groups according to seven items (frequency, timeliness, accuracy of communication, problem-solving capacity, shared goals, shared knowledge, and mutual respect). The survey results helped us pinpoint which coordination problems occurred and where. Results showed that the coordination between the asset management and projects departments was low, mostly related to timeliness of communication, knowledge about each other's work, and respect for each other's work. The lack of respect was most strongly experienced within the asset management department.

To supplement these findings, we conducted sixteen qualitative, semi-structured interviews with department heads, supervisors, and employees from the asset management and project sub department. In addition, we interviewed employees from other sub departments (a senior policy advisor, traffic manager, strategist, and project commissioner) with job positions that required intensive contact with employees from the asset management department as well as members from project teams. In these capacities, our selected interviewees were particularly well suited to exemplify coordination, representing the perspectives of multiple departments. Most interviews lasted for around an hour, although some extended to 75-90 minutes.

The main purpose of the interviews was to gather more detailed information on the actual coordination between project teams and the asset management department. At the start of every interview we asked interviewees open questions, inviting them to describe recent and prior events that were critical to coordination during collaborative episodes between teams and/or departments. Based on the events described, we were able to elaborate in detail on the determinants and consequences of the quality of coordination, and how the quality of coordination was related to experienced pressures on timely project completion within project teams. Our investigation involved iterative collection and analysis of data: when we found something particularly interesting, we used it strategically in subsequent interviews to check whether interviewees contradicted or confirmed these particular findings. All interviews were recorded and transcribed, and coded using MAXQDA software after the last interview had been conducted.
Figure 2.1. Data structure

Through this iterative process, we were able to reveal how coordination occurred under time pressure, and how these interrelated concepts were affected by specific dimensions of the political context. First, we empirically and systematically explored the key dimensions of the political context, time pressure, and coordination, and subsequently examined their interrelations in terms of triggers and constraints. We drew first-order categories from our initial coding process, and subsequently compared our findings to our theoretical framing. This allowed us to identify key themes, and to derive the aggregate dimensions of coordination under time pressures.

In the next section, we briefly introduce each of the key dimensions presented in the data structure (Figure 2.1) and their interrelations (summarized in Figure 2.2 below), after which we show our findings in more detail.
RESULTS
Within the municipality there was much public attentiveness to infrastructure projects (Figure 2.1, c), which intensified after underperformance and failure of several major projects. As a result, political priorities (summarized in Figure 2.1, a-b) were set on timely project completion in order to reduce public disturbance of projects, and to a much lesser extent on the long-term maintenance of infrastructure work. To make sure that projects focused on these objectives, political stakeholders imposed demands and pressures on timely project completion (Figure 2.1, d). Our observations and interviews showed that this reinforced the already present time pressure within project teams, resulting in a sense of urgency to achieve goals ahead of deadlines. Subsequently, time pressure generated differences in work pace (summarized in Figure 2.1, e-f); project teams were accustomed to a fast way of working, but responses from the asset management were often (too) slow. These differences tended to create tensions between the functionality and time (Figure 2.1, g-h), such as timely completion of projects versus the total life-cycle costs to maintain infrastructure work.

Project teams also indicated that for coping with time pressures, quick decision-making and timely coordination were necessary. However, this was often inhibited due to the tacit nature of knowledge within the asset management department, i.e., knowledge was “locked up” in employees’ experience and not well documented, which we categorized as embeddedness of knowledge (Figure 2.1, i-j). Moreover, the lack of knowledge awareness and difficult retrieval of knowledge indicated a lack of transactive memory (Figure 2.1, k-l), which also constrained quick decision-making and timely coordination.
| Political priorities | a1) Asset management does not have the political attention it requires. Highly visible projects, on which a lot of money is spent, acquire much more political attention. Expenses on maintenance become only visible within five or ten years. Therefore, this gains far less publicity than performing or finishing projects (organizational strategist).

a2) Like one asset manager once said to the councillor: “Your perspective is the number of votes you win tomorrow, and my perspective is what needs to be maintained the next 100 years” (project manager).

b1) For example, in large projects, the completion of renovation work and the consequent re-opening of infrastructure objects is sacred. There is no possibility to compromise on that. Logically, when pressure is sensible, everybody will focus on re-opening tunnels or bridges, even if it is at the expense of other interests (project manager).

b2) In case bridges or tunnels close for a specific period for renovation, numerous parties start to complain. For example, parties such as urban districts or business associations often have direct access to the media, which puts pressure politicians and higher administrators. (…) In such circumstances, there is a predominant focus on minimizing the closure of infrastructure objectives to prevent public discussion (project engineer).

| Pressure on timely project completion | c1) Multiple projects in our municipality, and particularly bridges and tunnels, are publicly very sensitive. For example, the entire public transport network depends on the tunnel closure in project Underwater. It is a main traffic artery in our municipality. All eyes are directed on the timely re-opening of this tunnel. This can create a lot of pressure (building supervisor Project Underwater).

c2) This summer, there will be a tunnel closure, and at the end of the renovation on 3 September, it has to be finished and completed. Not a day later. The media is preoccupied on this deadline and if we are not going to make it, there will be a media storm. (…) This causes headaches amongst our political principals (project manager Underwater in meeting).

d1) In our project team, we have to cope with a lot of external interference that is aimed at obtaining information about the chance that the project will succeed in time (Project engineer).

d2) Your project has all the political attention as a result of all the problems in the metro renovation project. I believe we can finish this project in time. However, I still think it is tricky. I want more information from you, as a team, as to how you think we can diminish our risks and increase our efficiency to complete this project (project principal during meeting).
Difference in work pace

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e1</td>
<td>We, project members, have to steer and control our projects really tightly. We adapt really quickly when changes occur in the direction of our projects. For others, this is far less important (project assistant).</td>
</tr>
<tr>
<td>e2</td>
<td>I try to be a bridge between projects and the asset management department. Projects always work really fast. You need to be very cautious, because the projects just hustle forth and we can easily lose out (asset manager).</td>
</tr>
<tr>
<td>f</td>
<td>Some requests within our projects need approval of the asset management department. When we go there, they need to create time for us immediately. It happens a lot that they say: “Not now, I am not ready.” (...) This is a risk for us (project manager).</td>
</tr>
</tbody>
</table>

Tensions between functionality and time

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>Project management mainly focuses on the pursuit of project goals. That is the main legitimacy of their existence. (...) Therefore they often miss the bigger picture (organizational strategist).</td>
</tr>
<tr>
<td>h</td>
<td>Our issues with reference to long-term sustainability are often a sideshow for projects. They just have different goals. They need to be sure that at a given moment in time a project is finished. Timel (asset manager)</td>
</tr>
</tbody>
</table>

Embeddedness of knowledge

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i1</td>
<td>Our department is organized very traditionally. Knowledge exits only in the heads of people and on top of that you need more than one person to advise another department (head of asset management department).</td>
</tr>
<tr>
<td>i2</td>
<td>There are people within the asset management department who already work there for more than thirty years. They have a high amount of knowledge and experience. The only problem is that it is locked away in their heads (senior policy advisor).</td>
</tr>
<tr>
<td>j1</td>
<td>Knowledge is locked away in the minds of employees. Everything is based on experience, and nothing is documented (one of the asset managers).</td>
</tr>
<tr>
<td>j2</td>
<td>There is a lot of information within the asset management department. It has to be somewhere, I think. But it does not seem to be documented and shared (senior policy advisor).</td>
</tr>
</tbody>
</table>

Lack of transactive memory

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>k1</td>
<td>Within our department, employees do often not know what the others do and know. This is very complicated (supervisor from asset management department).</td>
</tr>
<tr>
<td>k2</td>
<td>It is almost impossible to get a clear overview about everybody’s knowledge over there (traffic manager).</td>
</tr>
<tr>
<td>l1</td>
<td>I needed some information about a bridge. I had to go on our internal website to search for the particular team that is responsible for bridges. I found out that there were twenty people within our department who possibly could provide this information. But who do I need? At a certain point I started randomly calling people, and the fourth person I called, could eventually connect me to the responsible person (asset manager).</td>
</tr>
<tr>
<td>Lack of transactive memory</td>
<td>2) Once they had an idea to use the tram system for cargo transport and they wanted to know what requirements and standards they had to meet to develop a cargo tram. The asset managers of the tram system were working for a period of one year on a comprehensive document with demands. They had not organized this systematically. It was not documented. It only existed in the minds of individuals. (...) Eventually the one who asked for the information became very demotivated by waiting so long. He just wanted to order trams (commissioner).</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Timeliness of coordination | m) For example in relation to larger projects, we actually need four or five people to develop an overview. This overview is really hard to create. We do not have people who oversee all the assets and who are able to integrate the various disciplines within our department into a clear advice (head of asset management department).

n1) When employees of the project department come to us with specific questions, we need to be able to quickly and straightforwardly communicate our demands. And state as following: “This is what we want, and if you fix it in this particular way, we will approve and will eventually take over the project when it is finished.” But we do not have demands available in a clear way (asset manager).

n2) I believe I understand both departments. Projects are going very fast. I was a project leader myself for a while. I know the game. When they quickly need some piece of information or knowledge, I am often very frustrated about the time it takes to get it from my department. (...) And projects just rumble through. They will answer the question themselves in a blink of an eye and we are often too late (asset manager). |
| Knowledge utilization | o) In the end a given object is finished, and we have to take over something we actually cannot take over. There is no budget for maintenance, and it is not built in a way in which we can successfully exploit it (head of asset management department).

p1) Asset managers get the feeling that no one will take their advice seriously. If you give an advice ten times, and nine out of ten times people ignore it, then the eleventh time you will think: “Why should I put effort in giving advice?” In my opinion that is the way it goes (head of asset management department).

p2) Issues regarding spatial planning and developing a vision for the infrastructure system are of course far more interesting [sarcastic], (...) And then one gets questions like: how do we materially sustain our asset in the long-term? And how are we as cost efficient as possible in the light of the long-term total costs of ownership? This is of course less interesting. (...) In this entire process we are a dissatisfier (supervisor from asset management department). |
Finally, we investigated the consequences of these inhibitors and the political context, by examining how they constrained the quality of coordination. This was related on the one hand to timeliness of coordination (summarized in Figure 2.1, m-n), manifested in difficulties to develop integral advice and an inability to articulate demands. On the other hand, this constrained knowledge utilization (summarized in Figure 2.1, o-p), preventing asset management’s interests from being covered, and a lack of perceived respect for expertise from the asset management department. We present these findings in more detail below, substantiating on the proposed relationships in our model (Figure 2.2) and data structure (Figure 2.1) while drawing on exemplar quotes. For an overview of the exemplar quotes we kindly refer you to Table 2.1.

Political context: Political priorities and pressure on timely project completion

Within the municipality, public agents, managers, and political principals were strikingly vulnerable to the public scrutiny of municipal infrastructure projects. In our case, these projects were in full public view as they were performed in densely populated city areas. Moreover, throughout the span of infrastructure projects, project activities often had a major impact on citizens; for example when building sites are located in residential and crowded city areas or when the renovation of major traffic arteries, such as bridges and tunnels, causes major traffic congestions. Consequently, the performance and outcomes of infrastructure projects gained or generated much public attentiveness (see Table 2.1, c1-2). Political stakeholders were sensitive to this public attentiveness as they were elected or installed to serve the public interest; hence, political priorities were set on reducing the public disturbance from projects (Table 2.1, b1-2) and long-term maintenance was of a lesser priority (Table 2.1, a1-2). The priorities of political stakeholders did not remain unnoticed within the municipal public works department (see Table 2.1, a1-2), as one supervisor from the asset management department explained:

“When projects are established or finished, it generates a lot of positive publicity. For politicians this is much more interesting than the maintenance of a piece of asphalt or lamp post” (supervisor asset management department).

The fact that political priorities were given to the completion of projects and not to long-term maintenance of infrastructure work led to perceived disrespect within the asset management department (Table 2.1, p), which we will elaborate on later. The political
prioritizing and pressure on project completion intensified after a series of failures in three major infrastructure projects within the municipality. These projects faced severe time delays and cost overruns, resulting in extensive media coverage of project failure and a negative public opinion regarding “disturbing” infrastructure projects. To prevent further unnecessary project disturbance and to reduce the negative public opinion regarding projects, political stakeholders pressured project teams to complete their projects on time (Table 2.1, d1-2), as a project advisor stated:

“The pressure on teams that perform politically sensitive projects is enormous. (...) The councillor wants a 100% guarantee that we can perform both renovation projects in ten weeks” (communication advisor infrastructure projects).

Due to extraordinary political pressure on project completion, projects in some cases became almost a political vehicle, as an organizational strategist explained:

“There is a risk that political stakeholders or principals overly fuse with projects. In case they do not remain distant to projects, they cannot form a critical opinion about the scope, effectiveness, and long-term sustainability and utility of projects. They do not see the whole picture.”

For project teams, these dimensions of the political context clearly limited the space to maneuver and the timeframes available for projects, which sparked time pressures and a predominant sense of urgency within projects, on which we will elaborate more thoroughly in the next section.

Time pressure: Differences in work pace and tensions between functionality and time

Due to the demanding political context (see Table 2.1, a-d), project teams often had to cope with strict deadlines and pressure for timely completion of projects. For example, throughout project Underwater (tunnel renovation) or the red bridge project, time delays during project implementation would automatically lead to a delayed opening of respectively the tunnel and bridge. The prospect of subsequent disturbances would undesirably affect public opinion and increase the amount of political pressure. Among project team members, the focus on finishing projects in time thus generated a continuous sense of urgency (Table 2.1, e1). However, project team members did not
always perceive this urgency within other departments, such as the asset management department, with whom they frequently had to engage (Table 2.1, f). Indeed, managers of both departments recognized that asset management employees were far slower in their adaptability to time pressures, despite their recognition that a fast response was essential to cope with project teams’ faster pace of working (Table 2.1, e2). In fact, in the face of tight schedules, project teams could become very impatient for input from the asset management department, particularly because slow responses had repeatedly caused delays in the execution of infrastructure projects for the purpose of the construction of bridges or renovation of tunnels. Subsequently, project teams frequently made their decisions autonomously, pursuing their goals without awaiting input from asset management department and sometimes even bypassing them altogether, as one of the asset managers explained:

“You know the bridge to [name island]? (...) Yeah, that one. A beautiful bridge [laughs]. That bridge has a very ingenious lighting system. Light installations in the form of an arrow, which are suspended from the outside of the bridge above the water. To replace a bulb we developed a system in which these “arrows” could be moved toward the bridge. However, at the end of the project, with the opening approaching and budgets already being exceeded, the project manager decided to get rid of the folding system. This was not what we agreed on, and at this point in time there was no contact with our department about this.”

This quote illustrates that at key moments throughout project implementation, when time and budget were under pressure, project teams were able to increase their work pace (Table 2.1, e) in order to accomplish their short-term goals, i.e., finishing the project in time and within budget (Table 2.1, b1 & g), but in doing so potentially straining coordination. Indeed, from the manager’s indication that ‘at this point of time there was no contact’, one can interpret that any input from asset management teams into the decision to remove the coupling system was completely ignored by project managers, who were putting all their efforts into completing the project before stipulated deadlines. However, the consequence at the end of the project was that the asset managers had to take over a bridge that was very difficult and costly to maintain in the future (Table 2.1, o):
"This bridge is nine meters in height. Because they deleted this coupling system from the design, to replace a light we need a boat, and we have to build a scaffold on the boat. This costs us several thousands of euros every time" (head of the asset management department).

Indeed, this example also illustrates that besides a difference in work pace, time pressures also caused a discrepancy between the long-term functionality of infrastructure objects and the pressure on project teams to ensure timely and in-budget delivery of infrastructure work. In fact, while the project and asset management departments principally worked on the same infrastructure system, and both had high stakes in the successful completion of projects, the nature of their work and corresponding objectives evoked salient differences. For instance, as the asset management department was responsible for the total costs of ownership of infrastructure work, they would already be considering the costs for the entire lifecycle of infrastructure objects, rather than the initial costs of its development.

Nonetheless, the main focus and attention for project teams was on the completion of infrastructure projects within the predefined timeframe and project budget (Table 2.1, g), no matter what the long-term consequences may be. In the following section we will elaborate further on these consequences, focusing in particular on the pressure to complete projects in time that generates a necessity for quick decision-making, and why this evoked coordination problems.

Inhibitors of quick decision-making and coordination: Knowledge embeddedness and a lack of transactive memory

As illustrated above, pressures on timely project completion triggered a necessity for quick decision-making to ensure that short-term goals of project delivery were met, and these pressures showed through differences in work pace and in obligations. To explain how these time pressures constrained the quality of coordination, we examined the inhibitors of quick decision-making, which proved to be related to the timely coordination of knowledge between temporary project teams and the asset management department. This disclosed two (interrelated) inhibiting factors, namely embeddedness of knowledge and a lack of transactive memory. Regarding the first, asset management employees were generally perceived as specialists, possessing detailed knowledge about particular infrastructure objects, such as bridges, particular types of light installations, traffic control systems, or types of asphalt. They had gained their knowledge throughout
years of experience, and the content of their accumulated knowledge was related to their physical experience of particular infrastructure objects and locations. Interviewees frequently mentioned that this knowledge often remained inaccessible: it was embedded in people, or rather – to use the words of the head of the asset management department, it was “locked up” in the minds and experience of employees (Table 2.1, i1-2).

The embedded nature of knowledge in the minds and experience of employees also manifested itself in terms of its fragmentation amongst individuals and the absence of documentation about who had worked on particular projects (and who, thus, could be considered to have some expertise on related issues) (Table 2.1, j1-2). Therefore, knowledge exchange depended on individuals’ explanations of situations and experiences, which hindered project managers and advisors from the asset management department from integrating multiple assets into integral project plans and designs. For example, a bridge generally exists out of multiple assets (e.g., lighting systems, asphalt, and traffic control systems). Individual asset managers were generally experienced regarding the maintenance of one or more of these assets, but to provide an integral advice, involving the combination of all relevant assets, called for multiple individuals within the department. This was, therefore, clearly a challenge.

Concerning the second inhibiting factor, the lack of transactive memory within the asset management, difficulties existed for employees from both the asset management as well as from the project department to obtain an overview of other employees’ skills and expertise (Table 2.1, k1-2). In fact, both project and asset managers encountered great obstacles in identifying individuals with specific, appropriate knowledge, and they relied on random efforts to find them. For example, one asset manager arbitrarily started calling employees, because he and his close colleagues did not know who could answer a specific question about a part of the bridge (see Table 2.1, l1). Given the diversity of project scope and team composition, they had not yet succeeded in developing a useful format to systematically find and retrieve knowledge. Overall, the lack of knowledge awareness and the difficult retrieval thereof emphasize a need for a more effective ‘transactive memory’, to help access such knowledge in a codified, systematic manner.

The embedded nature of knowledge and lack of transactive memory contributed to the asset management department’s inability to quickly identify and integrate appropriate knowledge, which led to the inefficient use of time, and consequently to an appeal on project managers’ ability to make quick decisions in case they needed input from the asset management department. Within the asset management department, employees
sought to overcome these problems by relying predominantly on their direct colleagues, thus circumventing the need to search for knowledge outside of their own work field. Even though this approach was adequate for the performance of asset managers’ work, which focuses mostly on routine maintenance, such workarounds proved highly problematic when knowledge transfer was called for between advisors from the asset management department and project teams. Namely, as a result of the asset managers’ inability to enable access to knowledge, project teams would often encounter delays or technical complications (see Table 2.1, l2). Overall, the need for quick decision-making triggered by time pressures was inhibited by knowledge-related obstacles, and ultimately constrained the quality of coordination between project and permanent departments. In the following section, we will explain what these coordination constraints were comprised of.

Quality of coordination: Timeliness of coordination and knowledge utilization

In our example of the red bridge project, the quality of coordination suffered partly due to the difficulty for project managers to obtain an integral advice from the asset management department. As mentioned above, the bridge consisted of multiple assets, for which four or even five different asset managers were responsible, as the head of the department explained (Table 2.1, m). Identifying these asset managers was often a tiresome and difficult process (as explained above), but moreover, when project managers did succeed in doing this, asset managers often had trouble to clearly articulate their demands (Table 2.1, n1-2). The two departments hence appeared stuck in a self-reinforcing “catch-22” situation: project managers seemed to address the wrong people in the asset management department, (thus) articulating the wrong questions due to the multifaceted nature of most problems versus the singular expertise of the asset managers. At the same time, the asset managers’ inability to provide answers or information as to who could respond to the questions insufficiently provided project managers with the information they needed to clearly articulate their problems to the asset managers. This, then, made it all the more difficult to identify which asset manager could help. Thus, the inability to quickly develop an integral advice or to articulate demands harmed the efficacy of coordination in relation to projects.

This vicious cycle of problem articulation and response pressurized the interests of the asset management department, for instance related to the long-term functionality and maintenance of infrastructural objects and related unforeseen expenses. In fact, even the head of the asset management department, who was obviously aware of the problems
within her department, was regularly surprised that her department was expected to take over infrastructure objects that were difficult to maintain in the long term (Table 2.1, o), such as the lighting problem evoked by the red bridge example that we referred to above. Clearly, when the asset management department was forced to take over an infrastructure object that it was not consulted about and that it could (therefore) not evaluate in terms of its sustainability and construction, this gave way to tension and conflicts between projects and the asset management department. Asset managers felt that their interests were not covered (in terms of the long-term maintenance of an object), and that they were being sacrificed for the sake of finishing projects on time.

The perceived lack of consideration for asset managers' interests during the implementation of numerous development and renovation projects catalyzed coordination challenges. Asset managers felt that their knowledge and consequent advice were not taken seriously within their organization and political environment (see also Table 2.1, a & p). Projects rather focused on the objectives of political stakeholders aimed at timely project completion, which caused the knowledge of the asset management department to be utilized less and therefore to their department becoming increasingly marginal within the organization (Table 2.1, p1). Indeed, managers referred to their imbalanced significance, cynically indicating project teams' and political stakeholders' "more urgent" concerns (such as opening bridges and tunnels in time to meet public approval) versus "a cost efficient road that lasts over a period of twenty years", which is of course far less interesting, as one of the asset management supervisors somewhat sarcastically explained (see Table 2.1, p2).

In sum, the political priorities and pressures on project completion to reduce public disturbance, coinciding with the embedded nature of knowledge and the lack of transactive memory within permanent departments, eventually constrained coordination. As explained above, this was manifested by deficient and lack of timely coordination when input was required, and led even more broadly to a decrease in the utilization of knowledge from the asset management department.

CONCLUSION
We set out to understand how coordination occurs between projects and permanent departments under time pressure. However, our case also revealed how time pressures were strongly amplified by the political context of the public project, which in fact further
constrained coordination between project teams and the asset management department. The perceived pressure on timely completion of public projects triggered an urge for quick decision-making and timely coordination within project teams. In turn, this was inhibited by the embeddedness of knowledge and the lack of transactive memory within the asset management department. Therefore, employees were repeatedly unable to search for, access, and subsequently coordinate their knowledge in a timely manner, which inhibited their ability to provide input to project teams when this was required. This eventually led to a decrease in knowledge utilization from these permanent parts of the organization, prompting an important resource for the performance of high-quality, long-term sustainable infrastructure work to be negated. Within the more isolated parts of the organization, employees perceived the unequal representation of their interests throughout project implementation as disrespect for their expertise, which was further sparked by the fact that long-term maintenance was to a lesser extent a political priority. We visualized our findings in Figure 2.2, and explain the implications of our findings for theory and practice in the following sections.

DISCUSSION
In our case study, we sought to understand how temporary teams and permanent departments coordinated public projects under time pressure. In doing so, we exposed how the political context of public projects proved particularly salient: namely, political priorities and pressures on timely project completion can trigger time pressures and constrain the quality of coordination between temporary project teams and permanent departments. Thus, while aimed at ensuring timely project completion, political pressure can in fact end up harming the long-term strategy of involved public organizations.

With these findings, this research contributes to literature on public project realization by explaining how priorities and pressure on timely project completion can constrain coordination between public projects and permanent departments, thereby harming the overarching organizational objectives. First, we extend research on pacing between temporary projects and permanent departments, by revealing how political pressure further increases the pace of public projects, and in turn complicates the coordination between projects and other, slower-paced departments. Our study also contributes to literature on strategic knowledge coordination by explaining how the differentiated nature of transactive memory across organizational settings inhibits timely coordination.
Our research confirms that projects are an indisputable part of strategic management in which project goals are generally planned in advance to better help the organization meet its short- and long-term objectives (Shenhar et al., 2001). Therefore, project success is defined as a multifaceted and multidimensional concept (Atkinson, 1999; Shenhar et al., 2001; Shnur, Levy, & Dvir, 1997); the criteria for project success vary according to different interests among involved actors who depend on project outcomes. Approaching projects from this perspective, the achievement of overall strategic objectives revolves around the role that projects play in adjusting to stakeholder demands (Olander & Landin, 2005) and in integrating knowledge from involved departments and organizations (Bresnen et al., 2004; Newell et al., 2008). To effectively integrate organizational activities and knowledge and to align the interests of involved actors, projects must go beyond their specific deliverables and create opportunities for coordination.

However, as our case demonstrates, the political context of public projects makes coordination efforts aimed at the alignment and integration of the activities, knowledge, and interests of involved actors particularly challenging. Indeed, in politicized environments, the interests of various involved actors and stakeholders are often incompatible and rarely, if ever, covered equally (Aaltonen & Sivonen, 2009; Blackburn, 2002; Jensen
et al., 2006; Olander, 2007; Olander & Landin, 2005). Our research contributes to literature on political context and the unequal representation of interests, by explaining how political stakeholders react to public scrutiny of public projects, and consequently step up pressure on project teams. In situations where timely coordination with other actors involved cannot be established, this can prove harmful to the interests of involved permanent departments and public organizations.

With this contribution, we respond to calls for more in-depth understanding of projects’ political context and implications thereof for interior project processes and external linkages of projects (Dille & Söderlund, 2011; Jones & Lichtenstein, 2008). This is an important domain of inquiry, as project teams carrying out public projects within a politicized environment have to cope with significant pressures and imposed demands from political stakeholders regarding their activities and decisions, due to these stakeholders’ accountability for project completion (Aaltonen & Sivonen, 2009; Eisenhardt & Bourgeois, 1988; Haas, 2006; Hahn et al., 2013). Political pressures on timely project completion can sometimes help to align projects with the objectives of political stakeholders, as stipulated deadlines encourage and motivate project teams to complete projects in time (Dahlgren & Söderlund, 2001; Dille & Söderlund, 2011; Lindkvist et al., 1998). However, our research demonstrates that these positions can at the same time harm the interests of departments and the long-term strategy of involved public organizations for two reasons.

First, our case demonstrates that political prioritization and pressures on timely project completion can further increase the pace of project activities and decision-making within project teams, constraining the already complex coordination between projects and slower-paced permanent departments. Prior studies have argued that temporary project teams and permanent departments adhere to different timing norms concerning the pace of their activities and decision-making processes (Dahlgren & Söderlund, 2001; Söderlund, 2010). We thereby connect with the debate on pacing differences between temporary project teams and permanent departments, which has established that problems of pacing or coordination arise when both fail to mutually adjust or synchronize the timing and tempo of their activities and decision making (Ancona & Waller, 2007; Dahlgren & Söderlund, 1994; Gersick, 1994). Our case provides a more fine-grained analysis of these pacing problems by exposing how they are further aggravated by political prioritization.

Second, our case study revealed that problems of timely coordination between temporary project teams and permanent departments became most evident when coor-
dination of knowledge was required. Coordination of knowledge means that, in order to coordinate organizational efforts into common tasks and activities (i.e. projects), knowledge must be exchanged and integrated. This implies that employees have to understand how their expertise and knowledge are interrelated (Kotlarsky, Van Fenema, & Wilcock, 2008). From this perspective, we discovered that the timeliness of knowledge coordination was constrained by an underdeveloped transactive memory within the asset management department.

A transactive memory embodies the location and combination of individual knowledge and communication between individuals, enabling individuals to encode, store, and retrieve knowledge from different but complementary domains of expertise in collective tasks (Kotlarsky et al., 2012). For quick knowledge coordination it is, according to the central theoretical tenet, not necessary to know precisely what knowledge others possess, but merely what type of knowledge others can easily access (Larson & Christensen, 1993; Wegner, Giuliani, & Hertel, 1985). In that sense transactive memory can, if well maintained, help actors to more easily identify sources of knowledge, which improves coordination. However, in our case study it proved very difficult both for project members as well as asset managers themselves to “unlock” the knowledge from specific work contexts where employees did not coordinate outside their direct circle of familiar co-workers, which we conceptualized as the embeddedness of knowledge (Hsiao, Tsai, & Lee, 2006). Indeed, due to the differentiated nature of transactive memory, both project members and asset managers failed to mutually adjust or synchronize the timing and tempo of their activities, inhibiting coordination.

Given these findings, we contribute to prior research by explaining how the differentiated nature of transactive memory across organizational settings, or the underdevelopment of transactive memory in specific parts of the organization, can endanger knowledge coordination between projects and more routinized, permanent departments. So far, research has predominantly emphasized transactive memory as a group-level phenomenon (Austin, 2003; Hollingshead, 2001; Pearsall & Ellis, 2006). However, it remains unclear how transactive memory can affect processes and relations beyond teams or departments, which is surprising given the necessity for collaboration across team boundaries to realize complex work (e.g., public infrastructure projects). Consequently, our study paves the way for future research into the effects of team-level transactive memory on relations beyond the boundaries of teams and departments.
PRACTICAL IMPLICATIONS

This study has several practical implications for organizations. First, for political stakeholders of public projects it is important to realize that pressuring project completion can have negative consequences for projects and involved organizations. Our research demonstrated that in some cases it can seem necessary for political stakeholders to take measures aimed at project completion, particularly in case public projects are underperforming in terms of delays. Increasing pressure on projects might indeed ensure timely project completion, but can at the same time harm the (long-term) objectives of involved public organizations. Thus, political stakeholders should be aware that pressuring projects can damage a balanced representation of interests throughout project implementation, as our study shows.

Second, organizations could benefit from implementing the practice of cross-departmental employee transfer, which is better known as job rotation. Prior research has shown that job rotation potentially fulfills a knowledge transfer function, not only because employees from different departments bring new knowledge, but more importantly because they learn about the problems different departments experience (Dyer & Nobeoka, 2000). This was already partly the case in our study domain, since projects were temporarily staffed with employees from other departments, who were reinstated in their own department after project completion. Indeed, employees who worked for multiple departments stated that they were subsequently able to better understand the others. For example, one of the asset managers who had also worked as a project manager told us that this prior involvement with the project department made him more empathetic to their sense of urgency (see Table 2.1, j2). Thus, his work as a project manager made him more sensitive to the problems project teams experienced, for example when they would not receive information from asset management in time. Besides understanding each other’s perspectives, job rotation also enables organizational members to learn where to find particular expertise within different departments as well as whom to contact to access that expertise. In that sense, job rotation could be a means to create shared experience and to provide employees with opportunities to learn about coworkers’ work and knowledge. This allows them to retrieve information more easily – in other words, to establish a dynamic, relevant form of organizational transactive memory – and thereby strengthening organizations’ potential to align the speedy delivery of project objectives with their longer-term, strategic goals.