Samenvatting

Dit proefschrift bestaat uit vier onafhankelijke studies naar toepassingen van sociale en economische netwerken. Sociale connecties tussen agenten worden gerepresenteerd als links tussen knopen in een netwerkstructuur, welke als gegeven wordt beschouwd in iedere studie. We onderzoeken daarbij de verschillende effecten van de interactie tussen de agenten als beslissers. In dit verband bespreken we adaptatie van innovatie, coördinatie op acties onder beperkte communicatie, ‘wisdom of crowds’ met structurele veranderlijkheid, en kostenverdeelproblemen bij waterzuivering van een rivierenstelsel onder regio’s in de delta.

In de eerste studie gaat de aandacht uit naar een gegeneraliseerd model van spelen op netwerken, met als karakteristiek de inclinaties van individuele spelers als endogene sturende factor voor innovatief gedrag. Individen kunnen kiezen tussen twee acties: blijven bij de initiële actie of veranderen. Overgang op een nieuwe actie wordt bepaald door de individuele verwachte opbrengst welke afhangt van het aantal directe connecties die de agent heeft, de proportie van de buren die reeds tot de alternatieve actie zijn overgegaan en de neiging van de agent tot verandering. De geaggregeerde aanpassingsratio en inclinatie zijn onafhankelijk en worden beïnvloed door de onderliggende netwerkstructuur. Met ons model zijn we in staat om verschillende aanpassingsgedragingen te verklaren. In het bijzonder laten we existentie zien van niet-monotoon gedrag van de geaggregeerde aanpassingsratio, welke niet kan voorkomen in modellen zonder inclinaties. Een dergelijke inclinatiodynamiek kan ‘plotselinge’ uitbraak van collectieve actie verklaren. Dit resultaat suggereert dat het veelgebruikte statische concept van kantelpunt herzien moet worden, door herdefiniëring met inbegrip van de inclinatiodynamiek.

Onze tweede studie onderzoekt een herhaald tweekeuzespel met een onderliggend sociaal network, waar iedere agent in iedere periode alleen de acties en opbrengsten in haar directe omgeving kan observeren. Iedere agent wordt verondersteld een actie te kiezen uit ‘status quo’ en een onomkeerbare alternatief. Daarbij is het alternatief alleen gunstig voor een agent wanneer er genoeg medestanders zijn in het network. De drempelwaarde van het aantal medestanders dat een agent hiertoe minimaal nodig heeft is een individuele karakteristiek. We concentreren daarbij op de rol van het onomkeerbare alternatief als signalerings-
instrument. Het spelen van het alternatief kan opgepikt worden als aanmoedigend signaal voor de bereidheid tot actie op grotere schaal. We tonen aan dat de structuur van het netwerk en individuele voorkeuren zowel coördinatie kunnen bespoedigen, maar ook kunnen schaden.

De derde studie concentreert op het fenomeen ‘wisdom of crowds’, als voorgesteld door Golub en Jackson (2010), welke is een karakterisering van groeiende netwerken waarin individuele overtuigingen daarbinnen naar de waarheid convergeren – in de dubbele limiet van tijd en netwerk grootte. Het is een uitbreiding van het klassieke model van DeGroot (1974) over het bereiken van consensus binnen een netwerk van vaste grootte. In deze studie onderzoeken we de validiteit van de ‘wisdom of crowds’ wanneer de netwerkstructuur varieert in de tijd. We observeren dat wanneer het netwerk in iedere periode gerandomiseerd wordt gekozen uit een eindige verzameling van alternatieven, de samenleving nog steeds consensus kan bereiken onder een stringente conditie – maar dat ‘wisdom of crowds’ niet meer is vast te stellen. We demonstrieren dit verschijnsel aan de hand van een wiskundige analyse en numerieke simulaties.

In onze vierde studie beschouwen we kostenverdeelproblemen bij het zuiveren van een vervuilde rivier onder regio’s in de delta van een rivierenstelsel. De coöperatieve speltheorie bespreekt verschillende oplossingsconcepten – als bijvoorbeeld de Local Responsibility Sharing (LRS) methode, de Upstream Equal Sharing (UES) methode en de Downstream Equal Sharing (DES) methode – zie Ni en Wang (2007) en Dong, Ni en Wang (2012). We laten zien dat de UES en DES methoden ook verkregen kunnen worden als de conjunctieve permissiewaarde van een geassocieerd spel, waarin de permissiestructuur door de rivierenstructuur wordt bepaald en de waarden van het spel door de zuiveringskosten. Als resultaat zien we dat verschillende axiomatiseringen van de conjunctieve permissiewaarde ook leiden tot axiomatiseringen van de UES en DES methoden. Daarbij is een karakterisering is terug te leiden naar Dong, Ni en Wang (2012). We introduceren in dit deel een nieuwe methode als oplossing voor deze ‘vervuilde rivierenspelen’ door toepassing van de disjunctieve permissiewaarde; deze wordt geaxiomatiséerd en vergeleken met de UES methode.