Chapter 2

Go4it; study design of a randomised controlled trial and economic evaluation of a multidisciplinary group intervention for obese adolescents for prevention of diabetes mellitus type 2 General introduction

G.H. Hofsteenge
M.J.M. Chinapaw
P.J.M. Weijjs
M.W. van Tulder
H.A. Delemarre-van de Waal

BMC Public Health; 2008; 8: 410
Abstract

Background
In the Netherlands, the first adolescents with diabetes mellitus type 2 as a result of obesity have recently been diagnosed. Therefore, it is very important that programs aiming at the prevention of type 2 diabetes mellitus of obese adolescents be developed and evaluated.

Methods
Go4it is a multidisciplinary group treatment that focuses on: 1) increasing awareness of the current dietary and physical activity behaviour (i.e. energy balance behaviour), 2) improving diet, 3) decreasing sedentary behaviour, 4) increasing levels of physical activity, and 5) coping with difficult situations. Go4it consists of 7 sessions with an interval of 2-3 weeks. The effectiveness of the multidisciplinary group treatment compared with usual care (i.e. referral to a dietician) was evaluated in a randomised controlled trial. We examined effects on BMIsds, body composition, energy expenditure, glucose tolerance and insulin resistance (primary outcome measure), as well as dietary and physical activity behaviour and quality of life. An economic evaluation from a societal perspective was conducted alongside the randomised trial to evaluate the cost-effectiveness of the multidisciplinary treatment program vs. usual care.

Discussion
In this paper, we described a multidisciplinary treatment program (Go4it) for obese adolescents and the design of a randomised controlled trial and economic evaluation to evaluate its effectiveness and cost-effectiveness.
Background

Overweight and obesity in childhood are associated with negative psychosocial factors, orthopaedic complications, an increased risk for diseases such as hypertension, dyslipidaemia, asthma, sleep-apnoea and a strong increase of impaired glucose tolerance (1,2). Impaired glucose tolerance precedes the onset of type 2 diabetes mellitus (3). Overweight children are likely to remain overweight and are at increased risk of becoming obese compared to children of normal weight (4).

Sinha and co-workers found impaired glucose tolerance in 21% of obese children and 25% of obese adolescents (3). Four percent of these obese adolescents had type 2 diabetes mellitus. At the paediatric outpatient clinic of the VU University Medical Center, glucose-intolerance and insulin-resistance were diagnosed in 18% and 52% of obese adolescents, respectively (5). In 2003, the last Dutch national surveillance system of diabetes mellitus in children reported the first children with type 2 diabetes mellitus as a result of obesity.

Several reviews on interventions for treating obesity in children have been produced recently. These reviews suggest that there is some evidence that treatment of obesity in children and adolescents is feasible. However, there is a limited amount of data on effective components of programs to treat childhood obesity (6-10). Cognitive behavioural modification techniques have shown promising results regarding lifestyle changes in obese children (11). For obese adolescents, the impact of an intensive intervention programme aimed at attaining a healthy lifestyle has not yet been evaluated. The prevalence of obesity in the Netherlands is, analogous to the United States, expected to increase in the coming years (12). Therefore, there is an urgent need for interventions aimed at the prevention of obesity among adolescents as well as effective therapeutic interventions aimed at a healthy weight of the already obese.

For this reason, we developed Go4it, an intervention program for obese adolescents. This paper describes the design of the Go4it study; a randomised controlled trial (RCT) with an economic evaluation alongside. The aim of this study is to investigate the effectiveness and cost-effectiveness of this multidisciplinary group treatment for obese adolescents.

Methods

Design

The effectiveness of Go4it will be evaluated in a randomised controlled trial with an economic evaluation alongside. The Medical Ethics Committee of VU University Medical Center approved the study protocol.
Intervention

Go4it is a multidisciplinary group treatment for obese children that is based on the programmes of Braet et al. (11), Epstein et al. (13) and the materials of the Dutch Obesity Intervention in Teenagers (DOiT) (11,14). During 7 sessions with an interval of 2-3 weeks, the adolescents received education on dietary behaviour, physical activity and energy balance. They also received cognitive behavioural therapy in which they were learned how to improve their lifestyle regarding a healthy weight and how to maintain an adequate energy balance. Go4it was carried out multidisciplinary in an outpatient clinic with a dietician, paediatrician/endocrinologist and psychologist involved. The first session was focussed on increasing awareness of the current lifestyle. Besides dietary and activity journals, step counters (pedometers) were used to increase awareness of the actual behaviour. Next, the adolescents had to set goals with respect to improving their energy balance behaviour. Additionally cognitive-behavioural therapy characteristics were used, e.g. learning to cope with difficult situations (parties, holidays) and teasing. Go4it works with homework tasks, and the education is interactive. After 6, 14, 26, and 36 weeks, booster group sessions were scheduled in order to encourage the adolescents to maintain or further improve their energy balance behaviour and to discuss possible problems or questions. In addition, 2 separate sessions for the parents were organised. These parental sessions consisted of education concerning the health risks of overweight, healthy physical activity and dietary behaviour and how to support their children. Special materials were developed for this program; an information book, a workbook, and a dietary and activity diary. In addition, specific worksheets for every session were developed. The control group received the current regular care, consisting of referral to a dietician in the home care setting.

Study population

- **Recruitment of the study population**

All adolescents with overweight or obesity in the age range of 12-18 years who were referred to the outpatient paediatric obesity clinic of the VU University Medical Center were asked to participate. Overweight and obesity were defined according to the Cole criteria (15). A paediatrician interviewed all adolescents concerning past medical history, weight development, anthropometry, socio-economic status (SES) of the parents, and ethnicity. Additionally the following 3 questionnaires were administered as part of the regular care of the obesity clinic. The adolescents and their parents also received an information brochure about the study. Within 2 weeks, we phoned them to ask for their willingness to participate. Written informed consent was obtained from all adolescents as well as their parents.
Child Behaviour Checklist (filled in by parents)

The Child Behaviour Checklist (CBCL) is a questionnaire assigning quantitative scores to behaviour problems and competencies of children and adolescents at 4 to 18 years of age. The CBCL was filled out by parents or other caregivers. It is composed of 20 competence items and 118 behaviour problem items grouped into four competence scales and 11 problem scales. The competence scales include: activities (amount and quality of participation in sports, hobbies, games as well as jobs and chores), social (number and quality of relationships with others and involvement in organizations), school (an index of competence in school) and total competence score obtained summing the activities, social and school scales (a global index of adaptive functioning). The problem scales include eight syndrome scales: withdrawal, somatic complaints, social problems, anxiety/depression, thought problems, attention problems, delinquent behaviour, and aggressive behaviour; 2 psychopathology scales, internalizing and externalizing and, lastly, a total problem score, an overall index of the reported problems (16,17).

Youth Self-Report (filled in by the adolescents)

The Youth Self-Report (YSR) provides self-ratings for the same competence and problem items as those of the CBCL. The YSR also includes open-ended responses to items covering physical problems, concerns, and strengths. The adolescents rate themselves for how true each item is now or was within the past 6 months, using the same 3-point response scale as the CBCL (16,18,19).

Child Eating Disorder Examination-Questionnaire

The Child Eating Disorder Examination Questionnaire (ChEDE-Q) measures 3 forms of overeating: objective bulimic episodes, subjective bulimic episodes and objective overeating episodes. The ChEDE-Q also measures four methods of weight control: self-induced vomiting, laxative misuse, diuretic misuse and intense exercising (20). The items of the ChEDE-Q are derived from the initial eating disorder examination interview (21). The ChEDE-Q was modified to make it suitable for use in populations of Dutch children and is more concrete and simpler for children.

Inclusion and exclusion criteria

Adolescents are eligible when they meet the following inclusion criteria: 1) age of 12-18 years; 2) overweight or obesity according the definition of Cole et al. (15). Exclusion criteria for the study are: not Dutch-speaking, overweight/obesity as a result of a known syndrome or organic cause (hypothyroidism), mental retardation, physical limitations and diagnosed diabetes mellitus type 2.
Randomisation procedure
All participants will be randomly assigned to the intervention or control group, using SPSS for a random selection of a sample. Randomisation was stratified by age group (12-14 years, 15-18 years) and gender. Randomisation took place after the baseline measurements.

Sample size calculation
The sample size calculation is based on a difference in BMIsds of 0.29 (10%) between the intervention and control group after 18 months. The standard deviation for this BMIsds is considered to be 0.5. Based on these data, in an intention-to-treat analysis, 43 subjects per group are needed to detect this difference in mean BMIsds with an alpha of .05 and a power of .80. A sample of 108 persons (n=54 per group) is required taking into account a dropout rate of 25% (5,11).

Measurements
Primary outcome measures of the randomised trial was BMIsds. Secondary outcome measures were glucose tolerance, dietary behaviour, physical activity, sedentary behaviour and self-esteem. Data were collected at baseline and after 6 and 18 months intervention. All measurements were performed after an overnight fast, except for the Dual Energy X-ray Absorptiometry (DXA).

Body composition
- Height, weight and waist circumference
Height was measured and recorded with an accuracy of 1 mm with an electronic stadiometer (KERN 250D). Body weight was measured (in underwear) and recorded within 0.1 kg with a calibrated electronic flat scale (SECA 861). Weight and height were used to calculate BMI (weight in kilograms divided by the square of height in meters). The degree of overweight was quantified using Cole’s least mean square method, which normalized the BMI’s skewed distribution and expressed BMI as BMIsds (15). Reference data for Dutch children were used (www.growthanalyser.org; versie 3.5). The BMIsds indicates how many standard deviations a measurement is above or below the median of the distribution.

- Bio-electrical impedance spectroscopy
After an overnight fast, bio-electrical impedance spectroscopy (BIS) measurements were performed on the non-dominant side of the subject, using a Hydra ECF/ICF Bio-Impedance Spectrum Analyzer, model 4200 (Xitron Technologies, San Diego, CA, USA). Shoes and socks were removed and the subjects were in a supine position. Two current electrodes (tetra-polar electrodes (3M Red Dot AG/AgCl)) were placed on the dorsal surfaces of the hand and foot on the distal portion of the second metacarpal and metatarsal,
respectively. Two detector electrodes were placed at the posterior wrist between the styloid processes of the radius and ulna and at the anterior ankle between the tibial and fibular malleoli. The resistance and reactance measured at 50 kHz were used in the analysis, obtained by the program Hydra Data Acquisition Utility. With this technique, 2 body compartments, fat mass (FM) and fat-free mass (FFM), can be determined.

- **Dual Energy X-ray Absorptiometry**

Subjects were scanned for 10 minutes in underwear while lying in the supine position with arms and legs ab ducted from the body. All measurements were whole body scans performed with a Hologic QDR-Delphi, S/N 45665. The DXA method measures 3 components of the body: bone mineral content (BMC), fat mass (FM) and lean tissue mass (LTM). These components were calculated based on the differential attenuations of the 2-photon beams, caused by the differences in density and chemical composition (22,23).

Energy expenditure

Resting oxygen consumption (VO\(^2\)), and carbon dioxide production (VCO\(^2\)) were measured by O\(^2\), CO\(^2\) flow with a ventilated hood system for 30 minutes with a metabolic monitor (Vmax Encore n29, Viasys Healthcare, Houten, the Netherlands) after an overnight fast. Before each test, the gas analysers were calibrated with 2 reference gas mixtures (16% O\(^2\), 4% CO\(^2\) and 26% O\(^2\) (Viasys)). The subjects were monitored during the measurements to prevent any movement or to sleep under the hood. The first 5 minutes were excluded to account for environment adjustment by the children and gas adaptation in the hood. Then resting energy expenditure (REE) was calculated from oxygen consumption and carbon dioxide production by using the equation of Weir (24).

Metabolic measurement

- **Glucose tolerance and insulin resistance (Oral Glucose Tolerance Test)**

After an overnight fast subjects were given glucose, in a dose of 1.75 g per kilogram of body weight (up to maximum of 75 g) orally, and blood samples are obtained after 0, 30 and 120 minutes for the measurement of plasma glucose and insulin levels. Impaired glucose tolerance was defined, according to the American Diabetes mellitus Association guidelines, as a fasting plasma glucose level between 5.6–6.9 mmol/l and a 2-hour plasma glucose level between 7.8-11.1 mmol/l. Type 2 diabetes mellitus was defined as a fasting glucose level of 7.0 mmol/l or higher or a 2-hour plasma glucose level of more than 11.1 mmol/l (25).

Questionnaires

After the Oral Glucose Tolerance Test (OGTT) participants complete the following questionnaires:
- **Dietary behaviour**
Questions about 2 risk behaviours i.e. consumption of sugar-sweetened beverages and consumption of high-sugar/high-fat content snacks (14). The questionnaire is based on other validated questionnaires for assessing dietary intake (26,27). Adolescents indicate how many days a week they consume sugar-sweetened beverages or energy-dense snacks, and the amount/number of servings of sugar-sweetened beverages or energy dense snacks they usually consume on these days, thinking of the last week.

- **Dutch Eating Behaviour Questionnaire.**
Eating behaviour is assessed using the Dutch Eating Behaviour Questionnaire (DEBQ). This questionnaire consists of 33 items, on emotional (13 items), external, and restrained eating (both ten items). All items are rated on a 5-point scale ranging from 1 (never) to 5 (very often). The DEBQ scales have high internal consistency, high validity, and high convergent and discriminative validity (28,29).

- **Physical activity and sedentary behaviour**
The Activity Questionnaire for Adolescents & Adults (AQuAA), is based on the Short Questionnaire to Assess Health-enhancing physical activity (SQUASH)(30). This questionnaire was not designed to assess energy expenditure, but to give an indication of the habitual activity level and sedentary behaviour. The AQuAA questionnaire is structured in commuting activities, leisure time activities, household activities, and activities at work and school. For every item examples of activities are provided. The test-retest reliability and validity are currently being studied (Chin A Paw et al., submitted).

Quality of Life
- **Child Health Questionnaire**
The Child Health Questionnaire Child Form 87 (CHQ) questionnaire is a generic health status measure covering physical and psychosocial domains and was developed specifically for children and adolescents. The 87 items with 4, 5 or 6 response options is divided over ten multi-item scales and 2 single-item questions. Per scale the items are summed up and transformed into a 0 (worst possible score) to 100 (best possible score) scale (31,32).

- **Pediatric Quality of Life Inventory™Version 4.0**
The 23-item Pediatric Quality of Life Inventory™Version 4.0 (PedsQoL™4.0)Generic Core Scales for children aged 2 to 18 years encompasses: 1) physical function (8 items), 2) emotional functioning (5 items), 3) social functioning (5 items), and 4) school functioning (5 items). The instrument takes approximately 5 minutes to complete. The instructions ask how much of a problem each item has been during the past month. A 5-point Likert response scale is utilized (0 =
never a problem to 4 = almost always a problem). Scales are standardized, and scores range from 0-100, with higher scores representing better quality of life. The PedsQL has been shown to be both reliable and valid (33,34).

- **Body Esteem Scale for Adolescents and Adults**
The Body Esteem Scale (BES) questionnaire for adolescents has 3 subscales: BES-Appearance (general feelings about appearance), BES-Weight (weight satisfaction), and BES-Attribution (evaluations attributed to others about one’s body and appearance). The subscales have high internal consistency and 3-months test-retest reliability (35).

Statistical analyses
Descriptive statistics (means±SD or median and interquartile ranges, as appropriate) will be used to describe the study sample with regard to baseline characteristics. To evaluate the effects of the intervention, longitudinal linear and logistic regression analysis will be used. The mean difference between intervention and control group with 95% confidence intervals will be calculated. Regression analyses will be adjusted for baseline values and possible confounders such as gender and age. Also, effect modification will be investigated using interaction terms between intervention group and gender and age, respectively. All analyses will be performed according to the intention-to-treat-principle, meaning that we will not impute values for missing data (36).

Economic evaluation
An economic evaluation will be conducted from a societal perspective. All relevant costs will be assessed, valued and analysed. Costs will include costs of the interventions (Go4it programme and usual care), but also other health care related costs. For example, costs of visits to general practitioners, psychologists, physiotherapists, dieticians, paediatricians will also be estimated as well as costs of medication. Indirect costs of production loss are not relevant to this population of teenagers. Relevant cost data will be collected through cost diaries (37). Costs will be valued according to guidelines for economic evaluation in the Netherlands. Primary outcomes in the economic evaluation will be quality of life, BMI, physical activity and dietary behaviour. The economic evaluation will be performed according to the intention-to-treat principle. A cost-effectiveness analysis will be performed. The mean differences in total costs between intervention groups will be estimated and bootstrapping will be used to estimate 95% confidence intervals. Cost-effectiveness ratios will be estimated using bootstrapping techniques and graphically presented on cost-effectiveness planes. The incremental cost-effectiveness ratio expresses the additional costs of the Go4it programme per unit improvement of the effect. Acceptability curves will also be presented in which the probability that the programme is cost-effective is expressed as a function of willingness-to-pay.
Discussion

The Go4it program will be evaluated in a randomised controlled trial including an economic evaluation. We will determine the effectiveness and cost-effectiveness of this program, regarding body composition, energy requirement, dietary and physical activity behaviour, quality of life and body self-esteem. The results of this study contribute to the evidence-based knowledge of how to improve dietary, physical activity and sedentary behaviour among obese adolescents and how these behaviours affect weight and the development of diabetes mellitus type 2.
Reference List

17. Verhulst FC, Koot JM, Akkerhuis GW, Veerman JW. Praktische handleiding voor de CBCL. Assen, Neth.: Dekker & Van De Veg; 1990.

33. Varni JW, Seid M, Kurtin PS. PedsQL 4.0: reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Medical Care. 2001;39:800-12.

