CONTENTS

1 Introduction 11
 1.1 Historical introduction to molecular chirality 12
 1.2 Summary and outline of the thesis 15

2 Experimental methods 17
 2.1 Introduction 18
 2.2 Sample preparation and molecular beam generation 18
 2.3 Velocity map electron-ion coincidence imaging spectrometer 19
 2.3.1 Experimental setup 20
 2.3.2 Detector and 3D-imaging 23
 2.3.3 False coincidence 24
 2.3.4 Energy calibration of the electron detector and ion mass resolution 27
 2.4 PECD experiment, data acquisition and data analysis 29

Appendix: Multiphoton PECD evaluations 32

3 Laser system and applications 35
 3.1 Introduction 36
 3.2 The laser system 36
 3.3 Second and third harmonic generation 37
 3.4 Non-collinear optical parametric amplifier 38
 3.5 Prism compressor 40
 3.6 UV pulse generation 40
 3.7 Ultrashort pulse characterization 41
 3.7.1 Single-shot intensity autocorrelator 42
 3.7.2 Interferometric autocorrelator 42
 3.7.3 UV Pulse characterization 43
 3.8 Circularly polarized light 44
Contents

4 Photoionization study of pure limonene enantiomers using circularly polarized VUV light and electron-ion coincidence imaging 47
 4.1 Introduction 48
 4.2 Experimental and methodology 48
 4.2.1 Samples 48
 4.2.2 Light source 49
 4.2.3 Electron-ion coincident spectrometer 49
 4.2.4 Photoelectron circular dichroism experiment 49
 4.3 Results and discussions 50
 4.3.1 Time-of-Flight spectrum 50
 4.3.2 Slow photoelectron spectrum 52
 4.3.3 Photoelectron circular dichroism 55
 4.4 Conclusion 60

5 Chiral asymmetry in the multiphoton ionization of methyloxirane using femtosecond electron-ion coincidence imaging 61
 5.1 Introduction 62
 5.2 Experimental Section 63
 5.3 Results and discussions 65
 5.4 Conclusion 72

Appendix: Supporting information 73

6 Enantioselective femtosecond laser photoionization spectrometry of limonene using photoelectron circular dichroism 75
 6.1 Conclusions 83

7 Multiphoton photoelectron circular dichroism of limonene using femtosecond laser pulses 85
 7.1 Introduction 86
 7.2 Experimental method and setup 86
 7.2.1 Vacuum system and coincidence spectrometer 86
 7.2.2 Laser systems 87
 7.2.3 Data acquisition and treatment 88
 7.3 Results and discussion 88
 7.3.1 Time-of-Flight 88
 7.3.2 Multiphoton ionization process and PECD 90
 7.3.3 Photoelectron angular distributions and PECD 98
 7.4 Conclusions 100

8 Enantiomer specific analysis of multi-component mixtures by correlated electron imaging-ion mass spectrometry 103
 8.1 Introduction 104
 8.2 Results 105
 8.2.1 Coincidence detection of electrons and ions 105