Contents

1 Introduction ... 1
 1.1 Largest clusters ... 2
 1.2 Scaling limits ... 5
 1.2.1 The expected number of clusters 6
 1.2.2 Convergence of the largest clusters in an $n \times n$ box 7
 1.2.3 Magnetization in FK-Ising model 8
 1.2.4 Factorization formulas 11
 1.3 Overview of the thesis and list of publications 12

2 The size of the largest cluster 13
 2.1 Introduction and main result 13
 2.2 Ingredients .. 15
 2.3 Proof of Theorem 2.1.1 17
 2.3.1 More definitions, and brief outline of the proof 17
 2.3.2 Expected cluster size in a narrow annulus 19
 2.3.3 Properties of nice circuits 20
 2.3.4 Cluster-size contributions inside the circuits 23
 2.3.5 Completion of the proof of Theorem 2.1.1 24

3 Gaps between cluster sizes .. 27
 3.1 Introduction and statement of main results 27
 3.2 Notation and Preliminaries 29
 3.2.1 Preliminaries 29
 3.2.2 Large clusters contain many good boxes 30
 3.3 Proof of Theorems 3.1.1 and 3.1.2 32
 3.3.1 Gaps between sizes of clusters with large diameter .. 32
 3.3.2 Proof of Theorem 3.1.1 35
 3.3.3 Proof of Theorem 3.1.2 35

4 Expected number of clusters intersecting a line segment 37
 4.1 Introduction .. 37
 4.2 Preliminaries .. 40
 4.3 Proof of Theorem 4.1.1 42
 4.3.1 Proof of Theorem 4.1.1 (a) 43
 4.3.2 Proof of Theorem 4.1.1 (b) 44
5 Conformal measure ensembles for percolation and FK-Ising 47
 5.1 Introduction ... 47
 5.1.1 Definitions and main results 48
 5.2 Applications .. 53
 5.2.1 Largest Bernoulli percolation clusters and
 conformal invariance/covariance 53
 5.2.2 Geometric representation of the critical Ising magnetization field 54
 5.3 Further notation and preliminaries 55
 5.3.1 Space of nonsimple Loops 55
 5.3.2 Space of quad-crossings 56
 5.3.3 Assumptions .. 57
 5.3.4 Arm events .. 58
 5.3.5 Consequences of RSW 60
 5.3.6 Additional preliminaries 61
 5.3.7 Validity of the assumptions 63
 5.4 Approximations of large clusters 64
 5.4.1 Bounds on the probability of the events $\mathcal{N}(\varepsilon, \delta)$ and $\mathcal{A}(\varepsilon, \delta)$ 67
 5.5 Construction of the set of large clusters in the scaling limit 68
 5.6 Scaling limits in a bounded domain 71
 5.7 Limits of counting measures of clusters 73
 5.8 Properties of the continuum clusters and their normalized counting
 measures .. 77
 5.8.1 Basic properties ... 77
 5.8.2 Conformal invariance and covariance 79
 5.9 Proof of the convergence of the largest Bernoulli percolation clusters 81

6 Factorization formulas for percolation 85
 6.1 Introduction and Main results. 85
 6.2 Notation and Preliminaries. 87
 6.3 Proofs of the main results. 90
 6.3.1 Coupling of one-arm like events. 90
 6.3.2 Proof of Theorem 6.1.1. 96
 6.3.3 Proof of Theorem 6.1.2. 98

Summary 101

Acknowledgements 105

Bibliography 107