N.E. Verstegen
F.J. Lagerwaard
S.M.S. Hashemi

M. Dahele
B.J. Slotman
S. Senan

Journal of Thoracic Oncology. In press
Patterns of disease recurrence after SABR for early stage non-small cell lung cancer: Optimizing follow-up schedules for salvage therapy
Abstract

Introduction
SABR is a guideline-recommended treatment for early stage non-small cell lung cancer. We report on incidence and salvage of local recurrences (LR) and second primary lung cancers (SPLC) in a large series of patients with long-term follow-up, to generate data for evidence-based follow-up regimens.

Methods
We excluded all patients with double tumors, TNM-stages other than T1-T2N0M0, biologically effective dose <100Gy10 and previous treatment for the index tumor from our institutional database. LR was defined as recurrence in/adjacent to the planning target volume. A diagnosis of SPLC was determined using criteria described by Martini et al.

Results
The 855 patients included had a median follow-up of 52 months. 46 patients developed LR after a median of 22 months (range 7-87 months). Actuarial local control rates at 3 and 5 years, were 92.4% and 90.9%, respectively. 54% had isolated LR and 13% had LR in combination with regional recurrences. Ten patients underwent radical salvage treatment; surgery (N=6), high-dose radiotherapy (N=3), or chemo-radiation (N=1). Median overall survival following LR was 13 months, but it was 36 months in patients who underwent radical salvage. A SPLC was diagnosed in 79 patients, after a median interval of 34 months. Actuarial cumulative incidences of SPLC at 3 and 5 years were 11.7% and 16.7%, respectively. Radical salvage for SPLC was performed in 63 patients (80%)

Conclusions
Both the timing of LR and persistent risk of SPLC, serve as rationale for long-term follow-up using CT-scans in patients fit enough to undergo any radical treatment.
Introduction

Stereotactic ablative radiotherapy (SABR) is a guideline-recommended treatment for peripheral early stage non-small cell lung cancer (NSCLC) in patients who are unfit for surgery\(^1,2\). Although randomized controlled trials comparing surgery and SABR in operable patients have failed to accrue sufficient numbers of patients, comparative effectiveness studies suggest similar outcomes following both treatment modalities\(^3,4\). In recent years, a shift in treatment patterns has been observed, with SABR increasingly being used in fitter, high-risk surgical patients\(^5,6\). In such patients, early recognition of a local recurrence or new second primary lung cancer (SPLC), which is reported to occur in 3-6% per year, is particularly important as they are potentially salvageable\(^7\). In patients undergoing surgery for early stage NSCLC, treatment of local recurrences has been shown to be a predictor for post-recurrence survival. Therefore, the surgical resection of isolated local recurrences has been recommended\(^8\).

In patients treated with SABR for early stage NSCLC, clinical practice guidelines of the European Society for Medical Oncology recommend CT-imaging every 3-6 months for a period of 2-3 years post-radiotherapy, followed by annual CT-imaging\(^9\). This advice was updated in 2014 to emphasize that CT should also be performed with a frequency of 6-monthly for at least 3 years in those patients suitable for salvage therapy\(^9\). Such recommendations should ideally be based on long-term observational studies, but there is limited data available to guide the optimal follow-up frequency and duration after SABR. Similarly, there is little known about how many patients are eligible for such salvage treatments.

We previously reported on the outcomes after SABR in a group of 676 patients, after a median follow-up of 32.9 months\(^10\). In the present manuscript, we updated our series with more patients and longer follow-up, and pay specific attention to local recurrences and salvage therapy, in order to generate data for evidence-based follow-up regimens.

Materials and Methods

Details of all patients with ES-NSCLC treated with SABR between 2003 and 2013 at our center are recorded in an institutional database. For this study we excluded patients with synchronous lung tumors, a TNM-stage other than T1-T2N0M0 and previous treatment for the index tumor and patients treated with a fractionation scheme with a biologically effective dose (BED) <100\text{Gy}_{10}$.\"
Chapter 9

As reported previously, SABR was delivered in an outpatient setting, using risk adapted fractionation schemes to a total dose of 60 Gy, with more fractionated schemes for larger lesions and tumors near organs at risk11. All fractionation schemes had a biologically effective dose of >100 Gy\textsubscript{10} prescribed to the planning target volume (PTV).

Post-treatment follow-up generally consisted of contrast-enhanced CT-scans of the thorax and upper abdomen at 3 and 6 months post-SABR, followed by 6-monthly until 2 years after treatment and annually thereafter. Follow up was performed in our center and/or in the referring center. Where necessary, the general practitioner or pulmonologist was contacted to retrieve follow-up data.

Local recurrences were defined as a recurrence in, or adjacent to, the PTV. A local recurrence was suspected if there was a growing or increasingly dense mass on sequential follow-up CT-scans. For this analysis, cases where there was persistent uncertainty between either local recurrence or post-SABR fibrosis were scored as having a recurrence. Identification of high-risk radiological features suspicious for recurrence, such as those recently published, were not used for identifying local recurrences in the present cohort, as they were published after the study period9,12. In the event of a growing lesion suspicious for a local recurrence, and therefore followed up with imaging before a final diagnosis of a local recurrence, we dated the recurrence to the date of initial clinical suspicion. Loco-regional recurrence was defined as a local recurrence, either with or without tumor recurrence in regional lymph nodes.

A new, distinct pulmonary tumor was considered a SPLC if it fulfilled the criteria for multiple metachronous lung cancers described by Martini et al.13, namely: (A) different histology or (B) the same histology if (1) the disease-free interval between cancers was at least 2 years, or (2) if the origin was from carcinoma in situ, or (3) if the second cancer was in a different lobe or lung without carcinoma in lymphatics common to both and with no extra pulmonary metastases at the time of diagnosis.

Follow-up was calculated using the reverse Kaplan-Meier method14. Time-to-event outcomes were analyzed using the Kaplan-Meier method. The risks per year were calculated using actuarial control rates retrieved from the Kaplan-Meier survival tables. Univariate analysis was performed with the Log-rank test to investigate the prognostic value of age, gender, tumor stage, fractionation scheme, treatment delivery technique, PTV-size, presence of a pre-treatment pathological diagnosis, histology and a history of a prior (pulmonary) malignancy.
Results

A total of 855 patients with early stage NSCLC fulfilling the above mentioned inclusion criteria were identified. The median follow-up in all patients was 52 months (inter quartile range 33-72 months). The major patient characteristics are displayed in Table 1.

Table 1: Patient characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N(%) or Median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>74 (45-91)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>- Male</td>
<td>516 (60%)</td>
</tr>
<tr>
<td>- Female</td>
<td>339 (40%)</td>
</tr>
<tr>
<td>Pathological diagnosis</td>
<td></td>
</tr>
<tr>
<td>- Yes</td>
<td>308 (36%)</td>
</tr>
<tr>
<td>- No</td>
<td>547 (64%)</td>
</tr>
<tr>
<td>WHO-performance score</td>
<td></td>
</tr>
<tr>
<td>-0</td>
<td>111 (13%)</td>
</tr>
<tr>
<td>-1</td>
<td>446 (52%)</td>
</tr>
<tr>
<td>-2</td>
<td>256 (30%)</td>
</tr>
<tr>
<td>-3</td>
<td>38 (4%)</td>
</tr>
<tr>
<td>Charlson comorbidity index(^{24})</td>
<td>2 (0-11)</td>
</tr>
<tr>
<td>COPD</td>
<td>640 (75%)</td>
</tr>
<tr>
<td>Medically inoperable</td>
<td></td>
</tr>
<tr>
<td>- Yes</td>
<td>613 (72%)</td>
</tr>
<tr>
<td>- No</td>
<td>242 (28%)</td>
</tr>
</tbody>
</table>

Abbreviations: WHO: World Health Organisation, COPD: Chronic Obstructive Pulmonary Disease

In a total of 73 patients (i.e. 8.5% of all patients), a local recurrence was suspected at some point during follow-up after review of CT scans. Of these, a final diagnosis of a local recurrence was made in 46 patients by pathology and/or radiology. In the 27 patients in whom a recurrence was considered unlikely, this was based on a negative 18FDG-PET-scan in 13 patients (48%) and/or a negative biopsy in 3 patients (11%). In another fourteen patients, a local recurrence was considered to be unlikely based on the subsequent findings of stable or regressing masses on serial CT-scans.

In the 46 patients with a diagnosis of local recurrence, this diagnosis was established at a median of 22 months (range 7-87 months). The actuarial local control rates at one-, three- and five years post-SABR were 98.9%, 92.4% and 90.9%, respectively. Univariate analysis was performed in the entire patient cohort to identify potential factors influencing
local control. None of the investigated factors - age, gender, tumor stage, fractionation scheme, treatment delivery technique, PTV-size, presence of a pre-treatment pathological diagnosis, histology or a history of a prior (pulmonary) malignancy - correlated significantly with local control, see Table 2.

Table 2: Investigated factors in univariate analysis for correlation with local control

<table>
<thead>
<tr>
<th>Investigated factors</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.336</td>
</tr>
<tr>
<td>Gender</td>
<td>0.121</td>
</tr>
<tr>
<td>TNM-stage</td>
<td>0.183</td>
</tr>
<tr>
<td>Fractionation scheme</td>
<td>0.182</td>
</tr>
<tr>
<td>Delivery technique</td>
<td>0.650</td>
</tr>
<tr>
<td>PTV-size</td>
<td>0.630</td>
</tr>
<tr>
<td>Pre-SASBR pathology</td>
<td>0.584</td>
</tr>
<tr>
<td>Histology</td>
<td>0.843</td>
</tr>
<tr>
<td>Prior malignancy</td>
<td>0.584</td>
</tr>
</tbody>
</table>

In all but two patients, the diagnosis of a local recurrence was based on findings of a CT scan, either with or without additional investigations. One of the two patients without corroborative CT scan findings had local disease progression on serial chest X-rays only, but did not undergo further diagnostic tests. The second patient had a local recurrence diagnosed at autopsy. Increased uptake on 18FDG-PET scans was seen in 28 patients (61%), while other patients did not undergo 18FDG-PET scans. Unfortunately, data on SUV values for these scans was not always available. A final pathological confirmation of local recurrence was available in 18 patients (39%), with pathology obtained using transthoracic biopsy (N=7, 39%), bronchoscopy (N=3, 17%), a surgical resection (N=4, 22%), EBUS (N=2, 11%) or after autopsy (N=2, 11%). Of these 18 patients, 15 had both a positive 18FDG-PET scan and pathological confirmation of recurrence.

An overview of the diagnosis and management of local recurrences is given in Figure 1. Based on the available staging modalities, the recurrence was exclusively local in 25 patients (54%) and loco-regional in 31 of the patients (67%). In the 6 patients with a combined local and regional failure, regional failure was limited to ipsilateral hilar nodes in 4 patients, and 2 patients had mediastinal (N2) disease. Of 31 patients presenting with loco-regional recurrence, only 12 were considered eligible for radical salvage by a multidisciplinary tumor board (MDT).
Figure 1: Flowchart of staging and salvage in patients with local recurrences after treatment with SABR for early stage non-small cell lung cancer

Of these, 9 patients underwent radical salvage. Five patients had a surgical resection, followed by either adjuvant chemotherapy (n=2) or radiotherapy (n=1). Radical nonsurgical treatments included high dose radiotherapy (n=3) and chemo-radiation (n=1). Three other patients refused further treatment. A single patient with both a local recurrence and a solitary metastasis in an adrenal gland, was planned for radical treatment with a lobectomy to be followed by SABR for the adrenal metastasis. However, due to the detection of pleural metastasis during surgery, the patient was subsequently referred for palliative chemotherapy.

Three out of the twelve patients who were considered eligible for radical salvage by a MDT, were initially referred for SABR for their primary tumor as they were considered at high risk for surgery. At the time of a local recurrence, these patients were again discussed in
a MDT, and the surgical risks were considered as being acceptable. Of these, two patients underwent a lobectomy, and one a wedge-resection.

The median overall survival following the diagnosis of a local recurrence was 13 months (95% confidence interval 8.6–17.4 months). However, patients who underwent some form of radical treatment (n=10) had a median overall survival after local recurrence of 36 months (mean 32 months, 95% confidence interval 20–43 months).

Figure 2: Flowchart of staging and salvage in patients with a clinical diagnosis of SPLC after treatment with SABR for early stage non-small cell lung cancer

A diagnosis of a SPLC was made in 79 patients (9.2%), at a median time of 34 months following SABR (range 3–105 months). The actuarial cumulative incidences of SPLC at one- three- and five years post-SABR were 1.9%, 11.7% and 16.7%, respectively. The SPLC was located in the same lung in 37 patients (47%) and in the same lobe in 15 patients (19%); all of these had pathology different from the index tumor or an interval exceeding two years. Pathological confirmation of the SPLC was available in only 21 patients (27%). Median follow-up after the diagnosis of SPLC was 23 months (range 3-105 months), and median overall survival after diagnosis of a SPLC was 23 months. An overview of the diagnosis and management of SPLC is shown in Figure 2.
Discussion

The optimal follow-up schedule after SABR for early stage NSCLC is unclear, although the ESMO guidelines suggested CT-imaging every 3-6 months for a period of at least two or three years post-SABR followed by annually thereafter. As the literature on long-term follow-up after SABR is relatively limited, we studied recurrence patterns in 855 post-SABR patients who were followed up for a median of 52 months. Our main finding was a 5-year local recurrence rate of 9.1%, including the cases without a pathological confirmation. Two thirds of patients diagnosed with a local recurrence had either an isolated local- or loco-regional failure, indicating that the majority were potentially eligible for salvage therapy. However, only a minority (10 of 46 patients) finally underwent curative-intent treatment. The latter is likely to be a reflection of the fact that 72% of patients in this cohort were considered inoperable after assessment at a multi-disciplinary tumor board at the time of initial presentation. The favorable median overall survival of 36 months after radical treatment for a loco-regional recurrence mirrors that in surgical reports on radical salvage treatment.

Our results compare well to the recurrence rates reported by two prospective trials. In the RTOG 0236 trial, 55 patients were evaluable with a median follow-up of 4.0 years. The estimated primary tumor failure rate reported was 7%, and an additional 9 patients had recurrence in the same lobe (16%). In the prospective phase II trial reported by Baumann and colleagues, 57 patients were treated with SABR for T1-2N0M0 NSCLC, with a median follow-up of 36 months. A local control rate of 92% at 3 years was reported.

An important finding is that three patients, who had been referred for SABR previously after being considered to be at high risk for surgery by a MDT, were considered to be surgical candidates when they presented with local recurrence. This underlines the importance of discussing all patients with a loco-regional recurrence in a MDT, as medical inoperability is a grey area, and a reflection of the risks that patients and their physicians are prepared to accept in the absence of other curative options. Similar findings have been reported by other authors in patients who were initially considered inoperable, and who underwent SABR as initial therapy.

Distinguishing radiological changes after SABR due to local recurrences and radiation-induced fibrosis can be quite challenging and discussion of such cases in a MDT is important in patients fit for salvage options. We recommend the follow-up CT-scans to be reviewed.
by radiologists experienced in interpreting post-SABR findings. In case follow-up occurs outside of the treating center, we encourage centers to consult an experienced radiologist or radiation-oncologist in all cases of a suspected recurrence. Furthermore, ESMO guidelines recommend repeating 18FDG-PET scans if there is a suspected recurrence, and obtaining pathological confirmation whenever possible and when it is of consequence. In this series, pathology and 18FDG-PET scans were obtained in only a minority of patients, largely because of the diagnosis of distant metastases, or because of a combination of age and co-morbidity, and the views of an MDT about the lack of treatment options.

Figure 3: Incidence of SPLC and local recurrences per year in patients treated with SABR for early stage non-small cell lung cancer

Another observation is the wide range in time to diagnosis of local recurrences. A peak in local recurrences was seen between 1 and 3 years post-SABR, but late local recurrences were also observed. With longer follow-up in this present study, the median time to local recurrence after SABR has increased to 22 months, compared to 14.9 months as previously reported at our center. This, together with the observed annual rate of SPLC of 2% to 5%, suggests that long-term follow up of patients is beneficial. The rates of SPLC identified in our cohort are in agreement with published rates following surgery. In total, 80% of patients with a SPLC underwent radical salvage treatment, and because of the high percentage of early stage SPLC, salvage SABR for the SPLC was the predominant treatment. Reported outcomes for SABR for a SPLC have been shown to be similar to
Optimizing follow-up schedules for salvage therapies

results of SABR for a first presentation of NSCLC\(^\text{20}\).

A key limitation of this study is that not all patients had a pathological diagnosis before SABR treatment. However, reported rates of benign disease in patients staged with \(^{18}\)FDG-PET scans in the Netherlands, and who subsequently underwent surgery for a clinical diagnosis of early stage NSCLC, are low\(^\text{21,22}\).

As increasingly fit patients are now undergoing SABR and these patients will have longer follow-up as they have less competing causes of mortality, more emphasis is placed on detection and salvage of local recurrences, Until now, only limited data on salvage procedures with curative intent, e.g. surgery, has been available and although these studies with limited patient numbers suggest it is feasible, more data on the safety and outcome of such procedures is needed\(^\text{17,23,24}\).

In conclusion, both the timing of local recurrences after SABR, as well a persistent risk of SPLC, serves as a rationale for long-term radiological follow-up using CT scans, especially in patients fit enough to undergo any radical treatment. Our findings support the use of a similar follow-up strategy after SABR as was recommended for post-surgical cases\(^\text{9,25}\). Therefore, we recommend that all patients eligible for any type of salvage undergo 6-monthly follow-up CT-scans for a period of three years post SABR, followed by annual CT-scans thereafter. All patients who are suspected of having recurrence should be discussed in an MDT.
Chapter 10

References

