TABLE OF CONTENTS

Chapter 1: Introduction
1.1 An introduction to ASR 15
1.2 Knowledge gaps 20
1.3 Research objectives 20
1.4 Thesis outline 21

Chapter 2: Hydrogeochemical patterns, processes and mass transfers during ASR in an anoxic sandy aquifer
2.1 Introduction 23
2.2 Material and methods
 2.2.1 Description ASR site and monitoring wells 23
 2.2.2 Set-up of the ASR pilots 27
 2.2.3 Geochemical sampling and characterization 29
 2.2.4 Water sampling and analysis 30
 2.2.5 Hydrological calculations: travel time, pore flushes, bubble front position, and bubble drift velocity 30
 2.2.6 Quantification of hydrogeochemical reactions 31
 2.2.7 Quantification of the leaching of reactive phases 33
 2.2.8 Quantification of oxidant consumption 34
2.3 Results: The aquifer prior to ASR application 35
 2.3.1 Geochemical characterization 35
 2.3.2 The native groundwater 36
2.4 Results: Patterns and processes during ASR 36
 2.4.1 Hydrological behavior of the ASR bubble 36
 2.4.2 Overview of water quality changes 37
 2.4.3 Spatial hydrogeochemical patterns 41
 2.4.4 Temporal hydrogeochemical patterns 43
2.5 Results: Quantification of hydrogeochemical processes 44
 2.5.1 Results of mass balances 44
 2.5.2 Aquifer leaching 49
 2.5.3 Rates of oxidation reactions 50
2.6 Discussion 51
 2.6.1 Drinking water standards 51
 2.6.2 Comparison with related studies 52
2.7 Conclusions 53
Chapter 3: Reactive transport modeling of the Herten ASR pilot to assess long-term water quality improvements and potential solutions

3.1 Introduction
3.2 Material and methods
3.2.1 Description of ASR site and ASR cycles
3.2.2 Conceptual model and modeling approach
3.2.3 Kinetically simulated processes
3.2.4 Processes in thermodynamic equilibrium
3.2.5 Model geochemistry and hydrochemistry
3.2.6 Automatic model calibration
3.3 Results and discussion
3.3.1 Calibration and validation results
3.3.2 Modeled oxidation and dissolution rates
3.3.3 Model uncertainty
3.3.4 Scenario modeling
3.4 Conclusions

Chapter 4: Optimizing aquifer storage and recovery performance through reactive transport modeling

4.1 Introduction
4.2 Material and methods
4.2.1 Reaction network
4.2.2 Source water types
4.2.3 Transport parameters
4.3 Results and discussion
4.3.1 Analysis of a single ASR cycle
4.3.2 Effects of multiple cycles on abstracted water quality
4.3.3 Optimization – building a buffer zone
4.3.4 Optimization – dosing agents
4.3.5 Effects of bubble migration
4.3.6 Considerable issues
4.4 Conclusions

Chapter 5: Aquifer pre-oxidation using permanganate to mitigate water quality deterioration during ASR

5.1 Introduction
5.2 Materials and methods
5.2.1 Aquifer sediments
5.2.2 Water quality
5.2.3 Column setup and the experimental phases
5.2.4 Calculation methods

Chapter 6: Synthesis

6.1 Summary and conclusions
6.2 Concluding recommendations

Acknowledgements
References
Biography