Contents

Abstract vii

Contents ix

1 Introduction: The eukaryotic cytoskeleton and actin-microtubule coordination 1
 1.1 The eukaryotic cytoskeleton 1
 1.2 Cytoskeletal interactions 19
 1.3 Multiple roles for the cytoskeletal coordination toolbox 32
 1.4 Motivation and thesis outline 32

2 General experimental methods 35
 2.1 Introduction 35
 2.2 Flow cell preparation and surface functionalization 35
 2.3 Buffer conditions to work with actin filaments and dynamic microtubules 39
 2.4 Microtubule polymerization and tip tracking assays 41
 2.5 Proteins used in this thesis 42
 2.6 Buffers and stocks 44
 2.7 Total internal reflection fluorescence (TIRF) microscopy 45
 2.8 Data analysis 46

3 TipAct – An engineered actin-binding microtubule +TIP 49
 3.1 Introduction 49
 3.2 TipAct localization in mammalian cultured cells 52
 3.3 In vitro characterization of TipAct 53
 3.4 Discussion ... 60
 3.5 Materials and methods 62
 3.6 Data analysis 68

4 Guidance of microtubule growth and organization by F-actin 69
 4.1 Introduction ... 69
 4.2 TipAct and EB3 couple microtubule growth to F-actin bundles ... 71
 4.3 EB3 and TipAct have reduced off-rates at actin-microtubule overlaps . 73
4.4 Actin bundles capture and redirect growing microtubules 76
4.5 Ordered arrays of F-actin bundles can globally dictate microtubule organization 84
4.6 Discussion 88
4.7 Materials and methods 91
4.8 Data analysis 92

5 F-actin organization by dynamic microtubules 103
5.1 Introduction 103
5.2 Growing microtubules deform and reposition F-actin bundles 105
5.3 Growing microtubules exert forces on single actin filaments 106
5.4 Growing microtubules organize F-actin networks 108
5.5 Closing the loop: growing microtubules induce F-actin bundling 110
5.6 Discussion 111
5.7 Materials and methods 113
5.8 Data analysis 114

6 Transport and force generation by microtubule +TIPs 115
6.1 Introduction 115
6.2 Model of biased actin filament diffusion at microtubule tips 117
6.3 Gillespie-based simulations of actin filament transport by growing microtubules 135
6.4 Simulation results: effects of variable actin filament length, EB and tubulin concentrations 137
6.5 Comparison between simulation and experimental data 143
6.6 Further predictions of the model 146
6.7 Discussion 149
6.8 Materials and methods 154
6.9 Data analysis 154

7 Conclusions and outlook 159

Bibliography 163

Samenvatting 191

List of publications 195

Acknowledgements 197