Chapter 2

The emerging quest for the optimal angiostatic combination therapy

Arjan W. Griffioen¹, Andrea Weiss¹,², Robert H. Berndsen¹,², U. Kulsoom Abdul¹,
Marije T. te Winkel¹ and Patrycja Nowak-Sliwinska¹,².

¹ Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
² Laboratory of Organometallic and Medicinal Chemistry, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.

The emerging quest for the optimal angiostatic combination therapy
Abstract

Angiostatic therapies are now routinely embedded in the daily clinical management of cancer. Although these agents clearly benefit patient survival rates, the effect is only moderate with sometimes considerable side effects. A major cause of failure in this respect is the induction of resistance and tolerability against these drugs. Most angiostatic drugs are tyrosine kinase inhibitors that aim to inhibit or neutralize the activity of tumor produced growth factors. Frustrating the tumor cells in this way results in genetic adaptations in the cells, turning them into mutants that are depend on other growth mechanisms. It may therefore be necessary to shift to another class of drugs that directly target the tumor vasculature. It is evident that improvement of future angiogenesis inhibitors can only arise from two efforts. Firstly, through the identification of better drug targets, preferably specifically expressed in the tumor vasculature, or secondly, through the development of combination therapies. This review highlights the current efforts and challenges in trying to develop effective angiostatic combination therapies.
The emerging quest for the optimal angiostatic combination therapy

Introduction

Angiogenesis inhibitors have firmly entered the current clinical practice for treatment of cancer.$^{1-3}$ Many of these agents, such as bevacizumab/Avastin®, sunitinib/Sutent®, and erlotinib/Tarceva®, have provided new treatment options for patients with e.g. renal cell carcinoma (RCC) 3, non-small cell lung carcinoma,4 colorectal carcinoma1, and gastrointestinal stromal tumors2. However, when these drugs are used as monotherapies or in addition to existing treatment strategies, their contribution to patient survival is rather limited. This limited activity is most likely due to the heterogeneity that exists among patients, as well as in tumors5, limited dose schedules due to drug toxicity and the development of drug-induced resistance6. It is very likely, and also generally realized, that considerable improvement of cancer therapy should be achievable through the combination of different treatment strategies. Similarly, the identification of a superior angiostatic strategy could come from combining different vascular targeting and angiostatic regimens. Like most intrinsic cell functions, angiogenesis is regulated through a system of highly robust and redundant cell signaling pathways aimed to maintain normal cell function7,8. Neutralizing one of these pathways will likely lead to compensation by the cell through the upregulation of other pathways in an attempt to maintain normal function9. These redundant cell signaling pathways, which play a role to facilitate the development of drug resistance, may also increase the likelihood of identifying combinations of drugs which can synergistically inhibit angiogenesis10. Although it seems a daunting task to find an optimal combination therapy due to the enormous number of possible options, much can be learned from recent experiences in combining different therapies. This experience originates from efforts to combine different angiogenesis inhibitors, but also from research on the combination of angiogenesis inhibitors with other treatment approaches with intrinsic angiostatic potential, such as chemo-, radio-, immuno- and photodynamic therapy (Fig. 1). Without trying to be exhaustive, this review will give an overview of what is known about the development of angiostatic combination therapies and the challenges that are faced in trying to improve treatment of disease.

Combination of angiogenesis inhibitors

Design of an effective angiostatic strategy may be achieved by combining drugs, which inhibit a broad array of different angiogenic signaling pathways. Designing such a combination therapy, however, is not trivial, as two compounds may exert synergistic, additive or even antagonistic interactions on each other. In addition, synergy can also be dose-dependent, so while two therapies result in synergistic activity in a given circumstance, this activity may be lost when drug
doses and ratios are varied. Furthermore, the sequencing of drugs can also be extremely important, as has been demonstrated in the treatment of RCC, where an effective sequence of drugs can be ineffective when the order of administration is changed. Combination of drugs in the clinic is often based on the previous success of drugs when used as monotherapy or in combination with other drugs. It is clear that such an approach seems to rely on trial and error and, most importantly, fully ignores the biology of tumor and endothelial cells. However, combinations are continuously tested in preclinical research and promising strategies are subsequently tested in the clinic.

Since the identification of the first angiogenesis inhibitors in the early 1990s, reports can be found on the combination of these initial angiostatic compounds. It was realized that certain inhibitors act through different signaling pathways, potentially giving synergism between the drugs. An early example of such a study was the identification of synergism between angiostatin and endostatin, two drugs with rather unknown working mechanisms. Later, a study with the galectin-1 targeting drug anginex with angiostatin showed clear synergism.

![Figure 1. Angiostatic combination therapy, different strategies, many challenges.](image-url)
The emerging quest for the optimal angiostatic combination therapy

Therapeutic targets now being considered for new medications include vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and the mammalian target of rapamycin (mTOR). A pivotal example of the clinical use of anti-angiogenic therapy is the treatment of advanced RCC where anti-angiogenic agents demonstrated significantly greater anti-tumor effects as compared to the standard first line therapy with interferon-alpha\(^\text{14}\). The success of these compounds resulted in the testing of other combinations in preclinical studies. Some of these combinations have already been clinically tested, e.g. the INTORACT trial\(^\text{15}\), but have turned out to induce severe toxicity and ultimately did not prove superior to individual agents.

More studies resulted in the conclusion that the combination of angiogenesis inhibitors is heavily associated with toxicity, e.g. hypertension, hypothyroidism, hand-foot syndrome, and fatigue (TKI-associated) and immunosuppression, and non-infectious pneumonitis (mTOR associated)\(^\text{16-18}\). The combination of everolimus with or without bevacizumab is currently being evaluated in the second-line setting (CALGB trial; NCT01198158) and the results are pending. Moreover, trebananib, an immunoglobulin G1 (synthetic human Fc domain fragment) fusion protein with angiopoietin 1/angiopoietin 2-binding peptide) is currently in a phase II trial (NCT01664182) for advanced kidney cancer, with or without bevacizumab, pazopanib, sorafenib, or sunitinib, whose results are also still pending. Summarizing, the optimized effective combination treatment protocols have yet to be identified and the balance between effectiveness and tolerability should be carefully considered. Nevertheless, promising responses and important lessons have emerged from already completed clinical trials.

Another option of designing angiostatic combination therapies is with the combined use of conventional treatment strategies that have an intrinsic angiostatic activity. It has been known for some time now that certain chemotherapeutic compounds have an angiostatic effect as well\(^\text{19}\), especially when given at low dose long term regimens\(^\text{20,21}\). Radiotherapy and photodynamic therapy have also been known to have a major effect on the tumor vasculature, suggesting the potential for its successful use in combination with angiogenesis inhibitors\(^\text{22,23}\). In addition, the reciprocal interactions between the immune system and angiogenesis suggest that angiogenesis inhibition can be reinforced by immunotherapy\(^\text{24}\).
Angiogenesis inhibitors in combination with chemotherapy

Conventional chemotherapeutic agents are usually administered at their maximum tolerated dose (MTD) and exert their anti-tumour effects by killing cells that divide rapidly. In general, these agents are not considered to possess anti-angiogenic properties. In contrast, angiogenesis inhibitors do not show primary anti-tumour activity but rather act on endothelial cells. Although clear differences between chemotherapeutics and angiogenesis inhibitors exist, there are chemotherapeutics with anti-angiogenic properties. Browder et al. was the first to propose anti-angiogenic chemotherapy by showing that cyclophosphamide resistant murine tumours were strongly inhibited by frequent low-dose cyclophosphamide administration while the conventional MTD schedule was ineffective. In addition, they showed that the strong decrease in tumour size was correlated to increased endothelial cell apoptosis. This concept of targeting tumour vasculature endothelium with frequent low-dose chemotherapy was later called ‘metronomic’ therapy. The chemotherapeutics used for metronomic therapy include (amongst others) cyclophosphamide, capecitabine, topotecan and vinorelbine and are currently being used for breast cancer, glioblastoma, gastric cancer, prostate cancer, colorectal carcinoma and several other malignancies.

Ruthenium-based chemotherapeutics are also of particular interest, since these compounds show intrinsic anti-angiogenic properties and are in both clinical and preclinical development. For instance, NAMI-A (imidazolium trans-[tetrachloro(dimethylsulfoxide)imidazole ruthenium(III)]) and the anti-tumoral KP1019 (indazolium trans-[tetrachlorobis(1H-indazole)ruthenium(III)]) completed phase I and are currently in phase II clinical trials. Other ruthenium complex called RAPTA-C [Ru(η⁶-arene)X₂(PTA)] (PTA = 1,3,5-triaza-7-phosphaadamantane), exhibited interesting anti-metastatic [6-8] and anti-angiogenic in vivo properties.

Since metronomic therapy consists of frequent and well tolerated low-dose chemotherapy administration, combination with other treatment modalities may be of clinical benefit. It was previously proposed that by combining metronomic therapy with angiogenesis inhibitors, enhanced anti-tumour efficacy could be achieved. In recent years, many preclinical studies confirmed this hypothesis. For example, a study that evaluated the combination of metronomic topotecan and pazopanib in a murine model of human ovarian carcinoma showed that the anti-
The emerging quest for the optimal angiostatic combination therapy

tumour activity of topotecan was significantly enhanced by pazopanib. Another study showed that metronomic gemcitabine in combination with sunitinib inhibited primary tumour growth and metastasis in an orthotopic mice model for pancreatic carcinoma, while both individual treatments were less effective.

Apart from the conventional chemotherapeutics used for metronomic therapy, ruthenium compounds were also studied for their activity in combination with angiogenesis inhibitors. KP-1339 for instance, showed synergistic activity in vitro, as well as in vivo models in combination with sorafenib. It was proposed that NKP-1339 potentiates the anticancer activity of sorafenib by increased apoptosis and G2/M arrest.

Several clinical trials have been performed, or are still in progress, to further investigate the potential of metronomic chemotherapeutics in combination with anti-angiogenic agents. A study assessing the combination of metronomic capecitabine and cyclophosphamide in combination with bevacizumab and erlotinib in adult patients with metastatic HER2-negative breast cancer showed an overall clinical benefit of 75%, a prolonged median time to progression. This treatment regimen was well tolerated and showed only mild toxicity. In contrast, a study that evaluated the combination of metronomic vinorelbine in combination with bevacizumab in adult patients with metastatic breast cancer was cancelled due to a lack of efficacy, though the therapy was very well-tolerated. In addition, a phase II trial was conducted that tested the combination of bevacizumab with metronomic cyclophosphamide in patients with recurrent ovarian carcinoma and revealed significant activity of the treatment regimen. Currently under clinical evaluation is the combination of pazopanib and metronomic cyclophosphamide in patients with recurrent ovarian carcinoma (PACOVAR trial, NCT01238770).

Increasing preclinical and clinical data suggest a great potential for combining anti-angiogenic chemotherapeutics with angiogenesis inhibitors. A major advantage could be a well tolerable treatment regimen due to low drug doses. However, more clinical trials are necessary to reveal the true value of this anti-angiogenesis strategy.
Chapter 2

Angiogenesis inhibition in combination with radiotherapy

In general, anti-angiogenic therapy has the potential to induce structural and functional normalization of tumor vasculature. Additionally, angiostatic drugs may improve the tumor microenvironment. During this normalization window, the efficacy of conventional treatments is significantly enhanced, including concomitant radiotherapy (RT). Hence, administration of angiostatic drugs may increase the effectiveness of radiotherapy.

When RT is combined with angiogenesis inhibitors, a synergistic effect has been shown. For example, Dings et al. described the synergistic effect of combining RT and a direct anti-angiogenic peptide (anginex) or bevacizumab. As a result of normalized tumor vasculature, improved oxygen delivery is achieved, and hypoxic conditions are eliminated, resulting in a tumor microenvironment with enhanced therapeutic potential for radiotherapy. It is generally realized that the effects of high- and low-dose radiotherapy vary. Sofia Vala et al. found that low-doses of radiotherapy (0.5 Gy) induced rapid phosphorylation of several endothelial cell proteins, including VEGFR-2 and induced VEGF production in hypoxia mimicking conditions. This effect may explain why they found that low-dose irradiation actually enhanced angiogenesis and endothelial cell migration. Hence, low-dose radiotherapy may result in a progressive tumor growth and increased metastatic spread, in contrast to high-dose radiotherapy.

The clinical applicability of combining radiotherapy with anti-angiogenic drugs has also been studied. Especially bevacizumab was subject to several clinical trials in different types of tumor tissue, including head & neck and colorectal tumors. The phase I clinical trial by Czito et al. showed promising results. This group combined bevacizumab, capecitabine, oxaliplatin and radiation therapy for treatment of rectal cancer. Of the 11 included patients, 6 experienced a significant response. In the remaining 5 patients, the disease was progression-free during this study. Despite these encouraging results, some patients did experience minor adverse side effects, including bleeding and duodenal ulcers. Gasparini et al. who continued research on the combination of bevacizumab and radiotherapy in a phase II trial, also found a clinical benefit of additional angiostatic treatment. Overall, most phase I/II trials with bevacizumab and radiotherapy found a decrease in tumor progression, although toxicity of this combination remains an issue.
The emerging quest for the optimal angiostatic combination therapy

The combination of anti-angiogenic and radiotherapy has also been tested in brain tumors. For example, Knisely et al.42 combined thalidomide, an inhibitor of bFGF activity, with whole brain radiotherapy. Unfortunately, these trials showed no increased in overall survival in the combination therapy groups. Moreover, 48% of patients were excluded due to severe side effects. The authors argue that angiostatic drugs that directly act on endothelium may be more effective. It is evident that future research is required to determine the benefit of combining radiation with angiostasis. Keibeuker et al. provided a comprehensive review on the combination of radiotherapy with anti-angiogenesis22.

Angiogenesis inhibition in combination with immunotherapy

Immunotherapy is a rapidly growing field in the treatment of cancer. It involves stimulation of the components of either the innate or adaptive immune system to target tumor cells. This strategy not only enhances anti-tumor immunity but has also been shown to affect tumor angiogenesis. Immunotherapy is considered a double-edged sword since the immune system regulates both pro-angiogenic and anti-angiogenic factors. One approach enhanced the angiostatic activity of immunotherapy is to set the switch towards angiostatic components of the immune system involving specific cytokines, such as IL-2, IL-4, IL-12, IL-21, and INF-α. The cytokine IL-2, approved as a first-line therapy in RCC, has been shown to inhibit blood vessel formation in the chick embryo chorioallantoic membrane (CAM) through nitric oxide induction43. In a more recent study, antibody-based IL-2 delivery was performed in C1498 murine leukemia bearing immunocompetent mice and subsequent targeting of tumor neo-vasculature abrogated tumor growth44. This method of delivery also led to a decrease in AML lesions of an AML patient with disseminated extra-medullary manifestation. Another interesting study used antibody-based delivery of IL-4 and IL-12 to the tumor endothelium, causing tumor eradication in murine tetracarcinoma, colon carcinoma and lymphoma models45. Despite the fact that IL-4 and IL-12 have different immunological functions, it was quite intriguing that together they prevented tumor growth through angiogenesis inhibition. Synergy between cytokines at inhibiting vascular growth was demonstrated by Coughlin et al. already in 1998, showing that the combined action of IL-12 and IL-18 in a murine model led to strong angiogenic regression compared to treatment with only one of either cytokines46. In later studies the possibility to improve IL-12 as a therapeutic agent was explored by co-injecting mice with IL-12 and IL-18 cDNA. Surprisingly, this resulted in the rapid induction of IL-10, neutralization of TNF-α and reduction in toxicity while anti-tumor
activity of IL-12 was still retained\(^47\). Synergism was also shown in the clinic when patients with colorectal cancer were treated with pre-operative IL-2 immunotherapy resulting in increased IL-12 activity and decreased levels of VEGF in patient sera\(^48\).

Future clinical benefit may come from the fact that each individual cytokine elicits angiogenic targeting via different mechanisms. For instance, IL-21, another anti-angiogenic cytokine, seems to act through downregulation of STAT3 phosphorylation in endothelial cells\(^49\), whereas IL-4 was recently shown to target HIF-1\(\alpha\) translation, consequently leading to reductions in the proangiogenic activity of macrophages in the tumor environment\(^50\). IL-12 has been shown to mediate its action by up-regulating angiostatic molecules such as interferon-\(\gamma\) (IFN-\(\gamma\)) and angiostatin\(^51\). The cytokine interferon-\(\alpha\) (IFN-\(\alpha\)) is claimed to block angiogenesis by directly downregulating VEGF expression\(^52\).

Pre-clinical data show encouraging results in vitro and in vivo, but clinical trials have yet to progress with INF-\(\alpha\) and IL-2, being the only immuno-modulating agents to have been approved by the FDA. Various efforts have been made to combine IL-2 and IFN-\(\alpha\) in a clinical setting, but these have not been proven to be very successful due to severe toxicity. For example, in a randomized phase III trial high-dose IL-2 was compared with subcutaneous IL-2 and IFN-\(\alpha\), however the response rate to high-dose IL-2 therapy was markedly better in the patients although not significant\(^53\). On the contrary, a phase I study showed minimal toxic effects when patients received IL-12 prior to IFN-\(\alpha\)\(^54\). In patients with melanoma or renal cell carcinoma concurrent low-dose IL-2 combined with IL-12 was well tolerated and IL-2 seemed to enhance the immunological functions of IL-12 by maintaining IL-12 induced IFN-\(\gamma\) levels supporting the results from pre-clinical data\(^55\). IL-4 and IL-21 have been tested in phase I/II trials as single agents, however there are no trials combining the two with other cytokines\(^56\).

To conclude, cytokine-based immunotherapy in a monotherapy setting is not sufficient to prolong the survival of patients and great measures have to be taken to improve the patients’ quality of life. Combination of these strategies with direct angiogenesis inhibitors may be of future benefit.
Angiogenesis inhibition in combination with photodynamic therapy

Photodynamic therapy (PDT) is a form of therapy based on the systemic administration of a photosensitive agent and its local activation with a wavelength-specific light source. Photosensitizers, selectively excited with an appropriate light wavelength, react with environmental oxygen to produce highly reactive oxygen species (ROS) that damage surrounding tissues and lead to blood flow stasis. PDT is clinically used in the treatment of various superficial cancer types, including squamous cell carcinoma, early stage (in situ and microinvasive) cancer of the bronchi and the esophagus, basal cell carcinoma. Although a large portion of the effect of PDT is on the vasculature, a major limitation of PDT remains the secondary induction of angiogenic pathways in response to tissue hypoxia resulting from blood vessel closure. This process is believed to result in enhanced tumor recurrence and accelerated tumor growth after treatment. A promising strategy to overcome these secondary effects is through the combination of PDT with anti-angiogenic drugs. PDT has routinely been implemented in the clinical management of neovascular based eye disorders, such as age-related macular degeneration, or polypoidal choroidal vasculopathy (PCV). In both disorders it has been demonstrated that its therapeutic benefits are prolonged through the co-administration of VEGF-targeted antibodies, with or without anti-inflammatory compounds.

Although such combinations have yet to be applied in the clinical treatment of cancer, a large body of pre-clinical evidence indicates a potential for the enhancement of the therapeutic benefits of both treatments strategies through their combination. This may be of therapeutic value in the treatment of ocular tumors. Case studies have indicated the potential of using PDT in combination with bevacizumab/Avastin in the treatment of benign ocular tumors, such as circumscribed choroidal hemangiomas, to help minimize disease related vision loss. A potential role for the use of PDT in combination with angiogenesis inhibitors has also been suggested in the treatment peritoneal metastasis of various cancer types, including ovarian carcinoma. The study of Piatrouskaya et al., for example, used an orthotopic model of peritoneal carcinomatosis in rats to show a significant increase in the percentage of necrosis in disseminated tumor cells in tumors treated with a combination of intraperitoneal PDT and bevacizumab.

Additionally, we have previously investigated the potential of prolonging the angio-occlusive effects of verteporfin-PDT through its combination with angiogenesis inhibition in both...
physiologic angiogenesis in the chicken chorioallantoic membrane and in tumor angiogenesis in human ovarian carcinoma (A2780) xenografts in the same model. In the latter study, we reported the synergistic inhibition of tumor growth through the combination of sub-optimal doses of three anti-angiogenic TKIs (axitinib, sorafenib and sunitinib) and low-dose verteporfin-PDT. In another study, Ferrario et al. showed a significant prolongation in tumor response when Avastin® was added to Photofrin-PDT in the treatment of nude mice bearing Kaposi’s sarcoma tumors, as compared to either treatment alone.

Others have also investigated the potential to enhance the selectivity of PDT by increasing the delivery of photosensitizer to tumor tissue through their conjugation with molecules targeting angiogenic growth factors. Gamal-Eldeen et al. encapsulated indocyanine green (ICG) dye in polymeric nanoparticles using PEBBLE technology to make ICG-PEEBLE photosensitizers which were then conjugated to an anti-EGFR molecule. The treatment of CD1 mice bearing induced skin SCC tumors with the ICG-PEEBLE-Anti-EGFR photosensitizer showed increased inhibition of VEGFR and an increased in caspase-3 activity, as compared to the free ICG-PEEBLE. Gamaleia et al. investigated whether the efficacy of PDT could be enhanced by using a hematoporphyrin photosensitizer conjugated to an anti-VEGFR antibody and administering it at the time of day that coincides with maximal tumor concentrations of VEGF, based on the variation of VEGF production in tumors due to circadian rhythms. They showed the increased accumulation of immunoconjugated photosensitizer and a significant enhancement in the efficacy of therapy in mice with Lewis lung carcinoma and sarcoma 180, when treatment was performed during the time of maximal tumor VEGF concentration as compared to the time when minimal levels of VEGF were measured in the tumor.

Conclusion

The current overview makes it clear that there are major opportunities to improve angiostatic treatment. However, it also becomes evident that there are an almost infinite number of possibilities for the development of efficient angiostatic treatment regimens. Because of this enormous parametric space it is obvious that the current clinical trial and error approach will not result in optimal improvement of angiostatic treatment. Therefore it may be necessary to call upon mathematical modeling systems to systematically screen for optimal combinations. Several initiatives in this regard have been proposed. For example, to predicting the effects of combining anti-angiogenic and chemotherapeutic agents.
The emerging quest for the optimal angiostatic combination therapy

Acknowledgements
The study was partially supported by the Union for International Cancer Control (ICRET-13-080, to PNS), and European Community Action Scheme for the Mobility of University Students (Erasmus, to BHB).

References

The emerging quest for the optimal angiostatic combination therapy

