General introduction
1.1 Ageing population

Life expectancy at birth has increased in many European countries over the past few decades (OECD 2013). This increase was mainly attributable to improved living standards, lifestyle, education, and health care (OECD 2012). An increase in life expectancy is possibly accompanied by an increase in health care costs, as health care use may increase with age (De la Maisonneuve & Oliveira Martins 2013), and therefore a reason for concern for policy makers. Another reason for concern related to the economic consequences of the ageing of the population is the fact that the members of the baby boom generation have now reached retirement age. This large group of retirees will put pressure on pension costs.

1.2 Workforce participation of Dutch older workers has increased

As economic pressure was put on Dutch pension systems due the ageing of the population, retirement policies were changed to increase workforce participation of older workers. Efforts have been made to increase workforce participation among older workers from the mid 1990s onwards (Cooke 2006). Still, retirement after the age of 60 has been very uncommon in the late 20th and early 21st century. A reason for the relatively low participation rates in older workers above the age of 60 may have been that the Dutch government continued to support early retirement fiscally up to 2006 (Governmental report 2013a). After 2006, a drop in the number of retired individuals was visible and the average retirement age increased from 61 years in 2006 to just under 64 years in 2012 (Figure 1). Of Dutch women and Dutch men aged 55 to 64 years, 14% and 39%, respectively, were employed in 1996 compared to 43% and 66% in 2013 (Figure 2). In total, workforce participation among 55-64-year-olds increased during this period from 26% to 55%.

1.3 Further increasing the workforce participation of Dutch older workers: potential threats

Starting in 2013, the age at which public pensions are officially received (i.e. statutory retirement age) in the Netherlands will gradually be raised from 65 to 67 years during the coming decade (Governmental report 2013b). As a consequence, workforce participation of older workers may increase further in the future. However, several issues have been identified that may diminish the feasibility and
Figure 1: the number of retirees and the average retirement age in the Netherlands (2000-2012). Source: CBS.nl

Figure 2: workforce participation rates of Dutch men and women aged 55-64 years. Source: CBS.nl
success of increasing older workers’ workforce participation. Amongst other factors, older workers’ exposure to work demands and poor health have been identified as important factors that may keep older individuals from employment at higher ages (Crawford 2005; Ilmarinen 2006). In addition, whether health after retirement is affected by retirement age may affect the success of the retirement policies aimed at increasing older workers’ workforce participation (e.g. Van der Heide et al 2013; Westerlund et al 2009; Calvo, Sarkisian & Tamborini 2013). These three factors will be explained into further detail below.

The concept of work ability has been used in the past to determine whether individuals are able to work until high age (e.g. Van den Berg 2010). Work ability has been defined as ‘How good is the worker at present, in the near future, and how able is he or she to do his or her work with respect to the work demands, health, and mental resources?’ (Ilmarinen et al 2005). From this definition it becomes clear that both work demands and health status are regarded as essential factors affecting work ability. They have indeed been shown to be important predictors of work ability specifically in older workers (Ilmarinen et al 2005). Moreover, high work demands and poor health have been recognised as risk factors for sickness absence in both younger and older workers (e.g. Lund et al 2006) and early exit from employment in older workers (e.g. Reeuwijk et al 2013; Robroek et al 2013; Van den Berg, Elders & Burdorf 2010). Therefore, both work demands and poor health can be considered to be potential threats for older workers’ workforce participation.

Older workers may be exposed to a wide range of work demands. A distinction is made here between physical and psychosocial demands. Physical demands have been defined as energetic, biomechanical (static and dynamic demands on the musculoskeletal system), or environmental demands (Sluiter 2006). An example of physical demands is the use of force at work. Psychosocial demands refer to the quantity and intensity of the job in terms of ‘how hard workers work’, organisational constraints on task completion, conflicting demands, and cognitive workload (Karasek & Theorell 1990; Karasek et al 1998). Psychosocial demands of work may include time-pressure, task requirements, and cognitive demands. Cognitive demands require input from cognitive domains such as concentration, memory, decision-making or attention (Sluiter 2006). In addition to work demands, workers are also exposed to psychosocial work resources, such as co-worker support, which may help workers to deal with stressors from work.

High physical and psychosocial work demands and low psychosocial resources have been argued to be particularly important threats for employment at high age (Silverstein 2008; Kenny et al 2008). These work demands and resources have been observed to be important predictors of work ability in older workers,
while other known work-related characteristics which are predictors of work ability (i.e. joy of work, enthusiasm, skills, and basic education) are less important for older workers (Ilmarinen et al 2005). This may be because physical and cognitive health have already started to decline in older workers due to ‘normal’ ageing. For instance, a deterioration is seen in cardiovascular and musculoskeletal systems (e.g. maximal oxygen consumption) and certain cognitive domains (e.g. speed of decision making, short-term memory, attention), which are relevant aspects of health with respect to work (Ilmarinen 2001; Salthouse 2012; Sluiter 2006).

Next to age-related declines in health, physical health of older individuals has not necessarily improved compared to a few decades ago, despite an increased life expectancy (Deeg 2009). On the one hand, at birth and from the age of 65 years, the life expectancy in good subjective general health and without physical limitations has increased since 1981 (Bruggink et al 2009; Poos, Bruggink & Nusselder 2014). On the other hand, life expectancy without chronic diseases has decreased since 1981 (Bruggink et al 2009; Poos, Bruggink & Nusselder 2014). Also, the prevalence of obesity, excessive alcohol consumption (Visser et al 2005), physical limitations, and chronic diseases (Galenkamp 2013) increased compared to a few decades ago. Therefore, while older workers are now expected to work longer, their health has not necessarily improved. It remains to be seen whether older workers in poor health are able to work, particularly in jobs with high physical and psychosocial work demands. Therefore, in light of the population health trends as well as the age-related decline in health, older workers’ exposure to physical and psychosocial work exposures (i.e. physical demands, psychosocial demands, and psychosocial resources) may be a potential threat to older workers’ workforce participation.

In recent years, a shift has taken place from employment in agricultural and industrial sectors to employment in service sectors, resulting in less physically demanding jobs and more psychosocially and cognitively demanding jobs (Klein Hesselink, Kwantes & Houtman 2012; Handel 2012). Work has therefore more often become demanding on cognitive performance as opposed to for instance physical performance. These developments, combined with a potentially declining cognitive functioning of older individuals due to ageing, emphasise the importance of poor cognitive performance as a possible threat for employment at high age.

In the context of prolonging workforce participation of older workers, a debate has arisen about whether health after retirement is affected by retirement age (e.g. Van der Heide et al 2013; Westerlund et al 2009; Calvo, Sarkisian & Tamborini 2013). The question whether retirement age affects health should be considered when assessing the success of older individuals working until high age. Retirement is a life event that is experienced by many individuals aged 55-64 years.
It signifies a new stage in life in which individuals no longer have an income or daily structure from employment, irrespective of retirement age. Studies suggest that retirement may either decrease health (Atchley 1976; Bossé et al 1987) or improve health (Bossé et al 1987; Oksanen et al 2011; Drentea 2002; Ekerdt, Bossé & LoCastro 1983). The challenge seems to lie in determining the circumstances that shape the health effect of retirement. For instance, studies have repeatedly shown that retirement for health reasons and retirement that was involuntary determine the effect of retirement on health (e.g. Jokela et al 2010; Hallerod, Orestig & Stattin 2013; Gallo et al 2000). Moreover, the timing of retirement, i.e. retirement age, has been proposed to be one essential factor in determining the health effect of retirement (Marshall 2009; Elder 1994). Given that the average retirement age is increasing in the Netherlands as well as in many other European countries (OECD 2011), it is important to develop a better understanding of the consequences of retirement age on health. If retirement at high age for instance has a detrimental effect on health, health-care costs may increase. Potential financial gains of continued employment for the pension system may then be balanced by greater costs for the health-care system, consequently threatening the success of retirement age policies.

In this thesis, research is described which aims to further improve knowledge of the relationship between employment, retirement, and health in older workers and retirees to help determine whether the feasibility and success of the retirement policies aimed at increasing workforce participation can be improved. While other issues such as age discrimination and caring responsibilities (Crawford 2005; Ilmarinen 2006) are potentially also important threats to the feasibility of policies aimed at increasing workforce participation of older workers, focus in this thesis is put on the following research areas: physical and psychosocial work exposures, cognitive performance prior to retirement, and health status after retirement. Below, the objectives of this thesis are described into further detail.

1.4 General population job-exposure matrix

Objective measurements of physical and psychosocial work exposures (e.g. systematic physical exposure observations or testing urine for signs of stress) are often not feasible in large population-based studies because they are costly and time consuming (Stock et al 2005; Burdorf & Van der Beek 1999; Kompier 2005). Self-reported measurements of physical and psychosocial work exposures are more often used, but are potentially less precise compared to objective measurements and may be influenced by individual factors (e.g. mood, past experiences, health).
This calls for new efforts to obtain accurate and easy to apply measures of physical and psychosocial work exposures.

To determine work exposures, a general population job-exposure matrix (GPJEM; i.e. a cross-tabulation of occupations with a list of work exposures) has been used in the past. In a data set where the occupations performed by the respondents are known, work exposures can easily be determined with a GPJEM. Despite the argued and observed importance of physical work demands, psychosocial work demands, and psychosocial work resources (e.g. Silverstein 2008; Reeuwijk et al 2013), no Dutch GPJEM exists including all three work exposures to date. That is, Dutch GPJEMs exist, but they do not include psychosocial resources (De Zwart et al 1997; Schellart et al 1990; Swuste et al 2008; Peters et al 2011). Psychosocial resources are of interest, because stress is most likely to result from iso-strain jobs according to the demand-control-support model: a combination of high psychosocial work demands and low psychosocial work resources (Karasek & Theorell 1990; Karasek et al 1998). The Finnish GPJEM (i.e. FINJEM) includes information on psychosocial resources and is possibly the most widely used GPJEM (Kauppinen, Toikkanen & Pukkala 1998). Still, little is known of the applicability of other GPJEMs such as the FINJEM in other countries (Lavoué et al 2012). (Small) differences in work demands within jobs may exist between countries (Gallie 2005; OECD 2014) and other GPJEMs often use other occupational classifications which may lead to misclassification.

The first objective of this thesis is to develop and validate a Dutch GPJEM including physical demands, psychosocial demands, and psychosocial resources (objective 1). In this thesis, physical demands of work examined are the necessity to use force, to work in uncomfortable positions, and to perform repetitive movements. Psychosocial demands of work are time-pressure, task requirements, and cognitive demands. Psychosocial resources examined in the current thesis are autonomy (i.e. the extent to which individuals are able to decide when and which way they perform their work), variation in activities, co-worker support, and supervisory support. The GPJEM developed and validated in this thesis is designed for use in population-based studies such as the Longitudinal Aging Study Amsterdam (LASA) and designed for older workers. The GPJEM is designed for specifically older workers because older workers may be exposed to different levels of work demands and resources compared to younger workers performing the same job (Van Dalen et al 2009; Eurofound 2013), although great variations exist between and within jobs. The development of a GPJEM including physical and psychosocial work exposures may aid population-based research focused on the feasibility of prolonging working life of older individuals in the Netherlands.
1.5 Underlying and causal factors of memory complaints in older workers

As work may more often become demanding for cognitive functioning and cognitive functioning declines with age, poor cognitive functioning should be considered as a potential threat for employment in 55-64-year-olds. One cognitive domain is memory functioning. A declining memory functioning has been reported to be a relevant barrier for continued employment by older workers (Koolhaas et al 2010). In addition, older workers’ poor memory performance has been shown to be predictive of work exit or working part-time instead of full-time (Wickrama et al 2013). Memory complaints have been proven to be related to poor memory performance in older people aged 62 to 92 years (e.g. Dik et al 2001; Jonker, Geerlings & Schmand 2000) and may be used to identify those with poor memory. Complaints about memory performance are common in ageing individuals. In Dutch 55-64-year-olds, 41% of had complaints about their memory (Ponds, Commissaris & Jolles 1997). This is a substantial part of this age group, given that they are still employed or, based on their age, still eligible for the workforce. However, whether memory complaints are related to memory performance specifically in 55 to 64-year-olds is still unknown. Therefore, in this thesis, the association of memory complaints, as measured through one question ‘Do you have complaints about your memory?’, with objectively measured memory performance and decline in 55-64-year-olds is examined (objective 2a).

At all ages, memory complaints may be associated with other causal or underlying factors, such as personality, physical (Comijs et al 2002; Jorm et al 2004; Pearman & Storandt 2004), and mental health problems (e.g. Bolla et al 1991; Comijs et al 2002; Jorm et al 2004; Dufouil, Fuhrer & Alperovitch 2005; Derouesne et al 1999). Factors such as physical health are considered to be underlying of memory complaints; they are not thought to directly cause memory complaints, but are nonetheless independently associated with memory complaints. Individuals with a physical illness might focus more on their bodily functioning. As a result, they sooner notice a not necessarily failing but deteriorating cognitive functioning, resulting in memory complaints (Jorm et al 2004). Possible underlying or causal factors of memory complaints which have scarcely been examined are employment (i.e. having a paid job) and employment characteristics (i.e. assessable and recognisable aspects specific to a job). Stress and multitasking have been reported to be related to memory complaints (Vestergren & Nilsson 2010; Potter, Hartman & Ward 2009) which may suggest that a relationship between work and memory complaints exists. To our knowledge, a direct association between employment status (i.e. being employed compared to not employed) and memory complaints has until now not been examined in the general population.
Fairly few studies have been performed on the relationship between employment characteristics and memory complaints. In two previously performed studies, individuals aged 59 years and older reported that stress and the need for multitasking, although not necessarily from work, are the cause of their memory complaints (Vestergren & Nilsson 2010; Potter, Hartman & Ward 2009). Stenfors and colleagues (2013) revealed that psychological job demands (e.g. having to work fast or not having enough time) are associated with more cognitive complaints, including difficulties with concentration, decision-making, ability to think clearly, and memory. However, they did not adjust for objectively measured memory performance, which is necessary to determine the existence of an independent relationship between employment characteristics and memory complaints. Therefore, *objective 2b* in the current thesis is to examine whether memory complaints are related to employment status and employment characteristics in 55-64-year-olds, adjusted for other relevant causal or underlying factors of memory complaints.

In sum, the second objective of this thesis is to examine whether memory complaints reported by 55-64-year-olds are associated with objectively measured memory performance, employment, and employment characteristics (objective 2).

1.6 The effect of age at retirement on health

Individual and societal expectations exist for when and at which age life transitions like retirement should occur (Neugarten, Moore & Lowe 1965; Elder 1994). The timing of significant life transitions according to the connected expectations and beliefs about the age at which they should occur has been defined as social timing (Elder 1994; Marshall 2009). In general, if a life transition occurs in accordance with timing expectations, the life transition is perceived to be ‘on-time’. If not, i.e. the transition occurs earlier or later, the life transition is perceived to have taken place ‘off-time’ (Neugarten, Moore & Lowe 1965; Marhall 2009; Calvo, Sarkisian & Tamborini 2013; Quick & Moen 1998). The on- and off-time hypothesis can be applied to retirement. The consensus on the age at which retirement should occur is shaped by institutional incentives and constraints of retirement (Radl 2013), as the age at which retirement takes place is inevitably partly determined by such incentives and constraints (Settersten & Mayer 1997; Radl 2013; Börsch-Supan, Brugiavini & Croda 2009). People may develop a moral responsibility (i.e. norms about what they feel is the most appropriate behaviour) regarding retirement age, based on the retirement age that is made possible by incentives and constraints.
Therefore, expectations about the age-appropriateness of retirement go beyond a self-interested expectation (Kohli 1987; Radl 2013). As both norms and policies are emphasised, this approach has been defined as a ‘cultural-institutional’ approach (e.g. Calvo, Sarkisian & Tamborini 2013; Radl 2013).

The age at which retirement is viewed as most appropriate varies between individuals, countries, and over time (e.g. Kappelle & Deeg 2010; Radl 2013). Still, retiring around the age at which most peers retire may most likely be viewed as the consensus on-time retirement age and deviating from this age as the consensus off-time retirement age (Calvo, Sarkisian & Tamborini 2013). For example, between 1990 and 2002, the lowest average age at retirement for Dutch men was reported in 1993 at 60.3 years and the highest in 1998 at 61.6 years (Van Nimwegen & Beets 2006). Thus Dutch employees between 1990 and 2002 most likely perceived the age of 60 as on-time retirement.

In addition to legal sanctions (e.g. pension cuts), normative sanctions may occur if retirement occurs earlier or later than individual and societal expectations (Marshall 2009; Neugarten, Moore & Lowe 1965). Retiring too early or too late may have normative sanctions in that society and individuals condemn the retirement timing. Also, these norms may be used by individuals to assess their own transition. Off-time retirement may create feelings of being different from the norm (Mortimer, Oeseterle, Krüger 2005) and unfavourable social comparisons with age peers who continued employment when retirement was early (Van Solinge & Henkens 2007) or have already retired when retirement was late. On-time retirement may provide peer support and less stress (Van Solinge & Henkens 2007). Therefore, deviating from the normative age at retirement might result in psychological stress and, consequently, affect health.

Whether or not these expectations are strong enough to determine the effect of retirement age on health is not clear. This requires further investigation as a health effect of retirement age may in turn affect the success of retirement age policies aimed at increasing the workforce participation. The third objective of this thesis is to examine the relationship between retirement timing (i.e. on- and off-time retirement) and subjective health (objective 3). Two measures were examined as indicators of subjective health: subjective general health and emotional health. Subjective general and emotional health are important predictors of quality of life (Fayers & Sprangers 2002; Beekman et al 2002) and health care utilisation (DeSalvo et al. 2005; Wolinsky et al. 1994; Beekman et al 2002; Koopmans, Donker, Rutten 2005). Subjective general health (also known as self-perceived or self reported health) is observed to predict objective health such as mortality (Deeg & Bath 2003; Jylha 2009; Galenkamp 2013; Idler & Benyamini 1997; DeSalvo et al. 2005).
Subjective emotional health was examined using depressive symptoms. Depressive symptoms constitute a relevant measure of emotional health as they measure mood and interest in activities and may over time develop into major depression.

1.7 Data sets

Three different data sets are applied in order to examine the objectives of this thesis: the Longitudinal Aging Study Amsterdam (the LASA study), the Netherlands Working Conditions Survey (the NWCS study), and the German Ageing Survey (Deutscher Alterssurvey; the DEAS study).

The LASA study is a continuing population-based cohort study that focuses on cognitive, social, emotional, and physical functioning in later life. A random sample of 55-85-year-olds, stratified by age and gender according to expected five-year mortality, was drawn from population registries in 11 municipalities in 3 geographical regions of the Netherlands. Data were collected through a face-to-face and medical interview, mostly at the home address of the respondents. The sampling, data collection procedures, and non-response have been described in detail by Huisman and colleagues (2011). In total, 3,107 predominantly Caucasian (>99%) respondents were enrolled in the baseline examination in 1992-93. An additional sample of 1,002 respondents aged 55 to 64 years was drawn in 2002-03 using the same sampling frame as the original cohort. Both cohorts were followed up approximately every three years.

The NWCS study is the largest periodic survey on working conditions in the Netherlands (Koppes et al 2011). Starting in 2005, Statistics Netherlands drew random samples of 80,000 individuals annually from the National ‘jobs register’, which contains data on all jobs subsumed under the Dutch Employee Benefit schemes and that are liable to income tax. Since the response rate was known to be relatively low in employees aged younger than 25 years and in employees with a non-Western background, a 50% over-sampling took place for these two groups. Sampled individuals received the NWCS questionnaire at their home address, or the questionnaire was filled in through the internet. The responses were weighted by gender, age, educational level, sector, ethnicity, urbanisation level, and geographical region to obtain a sample in which the distribution of these factors corresponded to the distribution in all employees in The Netherlands.

The DEAS study is an ongoing population-based study (Engstler & Schmiade 2013). Respondents were questioned in detail on their living situation, occupational or retirement status, social participation and leisure activities, their
economic and housing situation, family ties and other social contacts, as well as issues regarding health, well-being, and life-goals. The baseline sample (age 40 to 85 years) was drawn by means of a national probability sampling technique with stratified sampling by age, gender, and place of residence (Eastern or Western Germany). About 50% of the individuals who were contacted agreed to an interview (n=4,838) and 83.4% of them additionally completed a questionnaire (n=4,034). The first DEAS study wave took place in 1996, the second wave followed in 2002, and the third in 2008.

1.8 Outline of this thesis and research design

In sum, studies are described in this thesis that aim to improve the comprehension of the relationship of employment and retirement with health. This will help determine whether the feasibility and success of the retirement policies, aimed at increasing workforce participation, can be improved. Figure 3 shows an overview of the objectives of this thesis. Specifically, this thesis has three objectives:

1) To develop and validate a GPJEM including physical work demands, psychosocial work demands, and psychosocial work resources.
2) To examine whether memory complaints reported by 55-64-year-olds are associated with objectively measured memory performance, employment, and with employment characteristics.
 a. To examine whether memory complaints are related to objectively measured memory performance and decline in 55-64-year-olds.
 b. To examine whether memory complaints are related to employment status and employment characteristics in 55-64-year-olds.
3) To examine whether on- and off-time retirement are associated with subjective general and emotional health.

In chapter 2, the development and validation of a physical and psychosocial GPJEM is discussed (objective 1). To determine physical and psychosocial work exposure, data from the NWCS study from 2005 through 2010 are merged and examined in this thesis. In total, an analytic sample is examined of 18,937 55-64-year-olds. To provide a first indication of the GPJEMs’ validity, the association between the GPJEM and health measures is determined using two study samples from the LASA study. First, data from the first (1992-93) and second (2002-03) birth cohort are pooled. To examine the association between health measures and work exposures in those
still working, respondents are examined who were <65 years and employed. In total, 551 respondents are included. Second, we examined exposure during the longest held job (asked during the first wave to unemployed respondents only), for which 1,676 respondents were examined.

Objective 2 is addressed in chapters 3 and 4. The association between memory complaints and memory functioning is reported in chapter 3 (objective 2a). LASA data from 2002-03 and 2005-06 are considered baseline and follow-up data, respectively. Data from 1992-93 and 1995-96 are not examined in this chapter because no data were available on memory functioning in 55-64-year-olds examined in 1995-96. Study samples of different sizes (i.e. ranging from n=598 up to n=897) are included to maximise power, depending on whether prevalent or incident memory complaints are examined and depending on which measure of memory performance or decline is examined (i.e. learning ability, delayed recall), which is explained in more detail in chapter 3. In chapter 4, it is examined whether employment and employment characteristics are associated with memory complaints (objective 2b). Data from the first and second birth cohort of the LASA study are pooled to determine whether memory complaints are related to employment status and employment characteristics in 55-64-year-olds. The 1992-93 and 2002-03 cycles are considered baseline and the 1995-96 and 2005-06 cycles follow-up. Different study sample sizes (i.e. ranging from n=368 up to n=1568) are examined in this chapter, depending on whether prevalent or incident memory complaints are examined.

Objective 3 is addressed in chapters 5 and 6. In chapter 5, the results are presented of a study in which the effect of retirement and age at retirement on subjective general health (referred to as self-perceived health in chapter 5) is examined. To determine whether subjective general health after retirement is affected by retirement timing, data from the first and second birth cohort of the LASA study are pooled. The 1992-93 and 2002-03 cycles are considered as baseline and the 1995-96 and 2005-06 cycles as follow-up. In all, the analytic sample included 216 retired and 290 continuously employed respondents. In chapter 6, the effect of age at retirement on subjective emotional health (i.e. depressive symptoms) is examined. Data from the DEAS study are used. The first wave is not used as no data on depressive symptoms were available. Data from the second (2002) and the third (2008) wave are regarded as baseline and follow-up data in chapter 6. In total, 406 continuously employed respondents and 175 retired respondents are examined.

In the general discussion in chapter 7, results are summarised and interpreted in light of the overall objective. Also, methodological strengths and limitations are discussed and recommendations for future research are made.
CHAPTER 1

Figure 3: overview of research objectives of this thesis

Employment & Health

Objective 1
To develop and validate a GPIEM including physical demands, psychosocial demands, and psychosocial resources.

Objective 2
To examine whether memory complaints reported by 55-64-year-olds are associated with objectively measured memory performance and with employment (characteristics).

Objective 3
To examine whether on- and off-time retirement is associated with subjective general and emotional health.

Retirement age & Health

Poor health, in combination with work demands, may limit possibilities for continued employed in older workers.

Health: objectively measured memory functioning

Health after retirement may be affected by the timing of the retirement transition.

Exposure to work demands and resources

Pre-retirement health

Effect of retirement age on health

Caring responsibilities, Age discrimination, etc.

Increasing older workers’ workforce participation: Potential limiting factors?

Physical and psychosocial work exposures
References

Deeg DJH. (2009) From old to new myths about ageing. [In Dutch: Van oude naar nieuwe mythen over ouder worden.] Geron; 11: 31-4.

Eurofound (2013) Role of governments and social partners in keeping older workers in the labour market. European foundation for the improvement of living and working conditions.

