Non-genetic cell-to-cell variability: theory and experiments

Anne Schwabe
Members of the Doctoral Examination Committee:

dr.ir. Yves Bollen
Vrije Universiteit Amsterdam

dr. Robert Planqué
Vrije Universiteit Amsterdam

prof.dr. Peter Swain
University of Edinburgh

prof.dr.ir. Sander Tans
FOM-Institute for Atomic and Molecular Physics

prof.dr. Bas Teusink
Vrije Universiteit Amsterdam
Non-genetic cell-to-cell variability: theory and experiments

Anne Schwabe

geboren te Siegburg/Duitsland
promotor: prof.dr. F.J. Bruggeman

copromotoren: prof.dr. H.V. Westerhoff
dr. P.J. Verschure
Contents

1 General Introduction .. 1
 1.1 Variability in biological systems 2
 1.1.1 Bacterial persistence to antibiotics 2
 1.1.2 Transcription factor variability and cell fate decisions in
 embryonic stem cells ... 3
 1.1.3 Phenotypic bistability of lac expression in *E. coli* 4
 1.2 Measuring cell-to-cell variability of transcript numbers 6
 1.3 Stochastic models .. 7
 1.3.1 Explained and “stochastic” variability 7
 1.3.2 Flipping coins and simple burst models 8
 1.3.3 Waiting time distributions - exponential and non exponential 9
 1.3.4 Queueing Theory .. 13
 1.4 Aim and outline of the thesis ... 14

2 Origins of stochastic intracellular processes and consequences for
 cell-to-cell variability and cellular survival strategies 17
 2.1 Cell-to-cell heterogeneity and measurement techniques 18
 2.2 Theoretical insights and experimental evidence 19
 2.2.1 Fluctuations in molecule numbers are inevitable consequences
 of the nature of molecular reactions 19
 2.2.2 Noise in mRNA numbers at steady state 20
 2.2.3 A switching-gene model that captures many experimental
 findings .. 23
 2.2.4 Eukaryotic translation bursts and eukaryotic protein noise 29
 2.2.5 Noise propagation in molecular networks 31
 2.3 Beneficial and detrimental effects of molecular noise 33
 2.3.1 Changing and uncertain environments; stochastic phenotype
 switching by microorganisms .. 33
 2.3.2 Bistable switches in cellular decision making 34
 2.3.3 Eukaryotic signaling and cell-to-cell variability 36
 2.3.4 Noisy decision making in eukaryotic development 37
 2.4 Conclusion ... 38

3 Volume scaling of the exact mRNA concentration indicates
 homeostasis and explains cell-to-cell heterogeneity 41
 3.1 Introduction ... 42
 3.2 Results .. 44
 3.2.1 Single-cell transcript data indicates gene-location dependent
 mRNA expression ... 44
 3.2.2 Volume statistics of single cells 46
3.2.3 mRNA concentration statistics of single cells indicate mRNA concentration homeostasis .. 46
3.2.4 The volume scaling of the mRNA concentration statistics explains the concentration variability 48
3.2.5 Discussion ... 50
3.3 Supplemental Information 53
 3.3.1 Materials and Methods 53
 3.3.2 The law of total variance for the copy numbers and concentrations of mRNA .. 57
 3.3.3 Average mRNA copy numbers correlate well with protein expression ... 62
 3.3.4 Concentration homeostasis and proportionality of the mRNA copy numbers as function of volume 62
 3.3.5 Summary of the distribution statistics 66
 3.3.6 Correlations All vs All 68
 3.3.7 Probe sequence .. 72

4 Single yeast cells vary in transcription activity and not in delay time after a metabolic shift 73
 4.1 Introduction ... 75
 4.2 Results ... 77
 4.2.1 Nutrient downshift causes a 40 minute lag phase in growth ... 77
 4.2.2 Single-molecule FISH of MET5 RNA shows that all cells respond to the nutrient shifts 78
 4.2.3 Transcription induction and repression displays large cell-to-cell variability .. 80
 4.2.4 Cells respond with a homogeneous time delay in transcription induction ... 81
 4.2.5 Direct activation of transcription reduces delay time fourfold ... 83
 4.3 Discussion ... 84
 4.4 Supplemental Information 86
 4.5 Experiments ... 86
 4.5.1 Strains, media, growth conditions ... 86
 4.5.2 Single molecule mRNA FISH ... 87
 4.5.3 Determination of intracellular methionine levels ... 87
 4.5.4 Oligos for mRNA FISH ... 87
 4.6 Image analysis and statistical tests ... 88
 4.6.1 Image acquisition ... 88
 4.6.2 Image analysis ... 88
 4.6.3 Statistical tests on RNA FISH data ... 89
 4.7 Data for the cadmium addition experiments ... 92
 4.8 Models and Data analysis 94
 4.8.1 Inference of delay time distribution ... 94
4.8.2 Deconvolution of the average and variance profiles over time with the delay time distribution 96
4.8.3 Calculating the instantaneous transcription rate 96
4.8.4 Transient deviations from mRNA concentration homeostasis could indicate a dependence of delay time on cell volume ... 96
4.8.5 Stochastic simulations of dividing cell populations 98
4.8.6 Pearson correlation between the number of RNA molecules in the nucleus and in the cytoplasm calculated for the subset of cells ... 100

5 Transcription stochasticity of complex gene regulation models 101
5.1 Introduction .. 102
5.2 Results ... 104
 5.2.1 Complex transcription regulation mechanisms 104
 5.2.2 Burst-size probability distributions for different transcription mechanisms ... 106
 5.2.3 The effective burst-size distribution: consideration of mRNA degradation during the burst phase 108
 5.2.4 Noise in mRNA copy numbers for genes with short on periods 109
 5.2.5 Noise in mRNA copy numbers for a gene with deterministic switch times .. 111
 5.2.6 Time-resolved single-molecule mRNA counting allows for model discrimination 112
5.3 Discussion .. 114
5.4 Supplemental Information 117
 5.4.1 Molecular ratchet: reconstruction from the literature ... 117
 5.4.2 Waiting Time Distributions 117
 5.4.3 Burst-Size Distributions 121
 5.4.4 mRNA noise for the ratchet model 122
 5.4.5 Comparison to Experimental Data 131

6 Inference of transcription dynamics from snapshot multi-color single molecule mRNA FISH 135
6.1 Introduction .. 136
6.2 Results ... 138
 6.2.1 A gene switch model with non-exponential waiting times ... 138
 6.2.2 An algorithm for fitting multi-color FISH data to the gene switch model ... 139
 6.2.3 Simulated example and comparison to single-color FISH data from literature ... 141
 6.2.4 Sensitivity to model assumptions 143
 6.2.5 The effects of extrinsic noise on the interpretation of fitting results ... 146
6.3 Discussion and future directions 147
6.4 Supplemental Information .. 149
 6.4.1 Analytical solutions for the gene switch model 149
 6.4.2 Preliminary experimental results with the MET5 gene 154
 6.4.3 Materials and Methods 162
 6.4.4 Image analysis in matlab 164

7 Contributions of cell growth and biochemical reactions to non-
genetic variability of cells .. 181
 7.1 Introduction .. 182
 7.2 Results ... 183
 7.2.1 Decomposition of molecule copy number variance into
 biochemical reaction and cell growth contributions 183
 7.2.2 Cell-division variance 184
 7.2.3 Mean and variance of the copy number at a particular cell age 187
 7.2.4 Variance due to the distribution of cell ages 188
 7.2.5 Variance due to the biochemical reactions and (extrinsic) noise
 propagation ... 189
 7.2.6 The full copy number distribution for zero-order synthesis and
 first-order degradation 190
 7.2.7 Variance decomposition for concentrations 193
 7.3 Discussion .. 194
 7.4 Supplemental Information 197
 7.4.1 Decomposition of the variance in molecule copy numbers .. 197
 7.4.2 Variance from cell division 198
 7.4.3 Variance due to partitioning for a stable molecule 198
 7.4.4 Population level variance decomposition for a simple burst
 model .. 199
 7.4.5 Using generating functions to calculate the cell age dependent
 copy number distribution 200
 7.4.6 Noise in interdivision times 203

8 General Discussion ... 211
 8.1 Conclusions from this thesis 212
 8.1.1 The mRNA concentration of our reporter construct was
 homeostatic with volume 212
 8.1.2 The response time of single yeast cells to a switch in sulphur
 source proved very precise 212
 8.1.3 Coarse-grained reaction modules can often be modeled with
 gamma distributed waiting times 212
 8.1.4 Steady-state copy number distributions contain little
 information about the underlying molecular mechanisms .. 213
 8.1.5 Inference of burst statistics could be improved with FISH
 experiments using multiple probe sets in different colors .. 213
 8.1.6 Cell growth contributes to cell-to-cell heterogeneity 213
<table>
<thead>
<tr>
<th>Contents</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 Outlook</td>
<td>214</td>
</tr>
<tr>
<td>8.2.1 Time-resolved measurements</td>
<td>214</td>
</tr>
<tr>
<td>8.2.2 Queueing theory</td>
<td>215</td>
</tr>
<tr>
<td>8.2.3 Reflections</td>
<td>217</td>
</tr>
<tr>
<td>Bibliography</td>
<td>219</td>
</tr>
<tr>
<td>Summary</td>
<td>250</td>
</tr>
<tr>
<td>Samenvatting</td>
<td>252</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>255</td>
</tr>
<tr>
<td>List of publications</td>
<td>257</td>
</tr>
<tr>
<td>Curriculum Vitae</td>
<td>259</td>
</tr>
</tbody>
</table>