We generalize the exact strong-interaction limit of the exchange-correlation energy of Kohn-Sham density functional theory to open systems with fluctuating particle numbers. When used in the self-consistent Kohn-Sham procedure on strongly interacting systems, this functional yields exact features crucial for important applications such as quantum transport. In particular, the steplike structure of the highest-occupied Kohn-Sham eigenvalue is very well captured, with accurate quantitative agreement with exact many-body chemical potentials. While it can be shown that a sharp derivative discontinuity is present only in the infinitely strongly correlated limit, at finite correlation regimes we observe a slightly smoothened discontinuity, with qualitative and quantitative features that improve with increasing correlation. From the fundamental point of view, our results obtain the derivative discontinuity without making the assumptions used in its standard derivation, offering independent support for its existence.

First-principles calculations of many-electron systems such as solids, molecules, and nanostructures are based, to a very large extent, on Kohn-Sham (KS) [1] density-functional theory (DFT) [2]. KS DFT is, in principle, an exact theory, in which the ground-state energy and density of an interacting many-electron system are mapped into a problem of noninteracting electrons moving in the effective one-body KS potential. In practice, KS DFT relies on approximations for the exchange-correlation energy that, although successful in very many cases, still have deficiencies that hamper its overall usefulness [3].

Exact KS DFT has many weird and counterintuitive features often missed by the available approximations. One of the weirdest and most elusive of these features is the derivative discontinuity of the exact exchange-correlation energy functional at integer particle numbers N [4], which has been an incredibly long-debated issue [5–15] because its formal derivation relies on some (very reasonable) assumptions. This discontinuity makes the exact KS potential “jump” by a constant Δ_{xc} when we add to an N-electron system even a very tiny fraction η of an electron, aligning the chemical potential of the noninteracting KS system to the exact, interacting one, as schematically illustrated in Fig. 1. The derivative discontinuity has crucial physical consequences. For example, it accounts for the difference between the KS and the physical fundamental gaps [16–18], it allows a correct KS DFT description of molecular dissociation [4,19], and it should improve charge-transfer excitations in time-dependent DFT [20–22]. It also plays a fundamental role in quantum transport, especially to capture the physics of the Coulomb blockade and the Kondo effect [23–27]. These are all cases in which the standard approximations, which miss this discontinuity, work poorly. Corrections based on the explicit enforcement of the discontinuity have often been proposed as a practical solution (see, e.g., Refs. [28–31]).

Recently, it has been shown [32,33] that the exact strong-interaction limit of DFT [34,35] provides a nonlocal
density functional, called “strictly correlated electrons” (SCE) [34–36], which can be used to approximate the exchange-correlation energy of KS DFT, capturing key features of strong correlation such as charge localization in low-density quantum wires without any symmetry breaking [32,33]. This approximation becomes asymptotically exact in the very low-density (or infinitely strong correlation) limit [32,33]. The purpose of this Letter is to generalize the SCE functional to the case of fractional particle numbers, yielding an exchange-correlation functional for open systems that becomes more and more accurate as correlation increases, and that can already be used for modeling nanotransport through low-density quantum wires and dots. Our results also support the assumptions that were made to derive the existence of the derivative discontinuity [4] and provide new insight for the construction of approximate functionals.

The Letter is organized as follows. After briefly reviewing the essential background material, we present the rigorous generalization of the SCE functional to fractional electron numbers. We then show that, without breaking the spin symmetry, the self-consistent KS results with the SCE functional display the right discontinuities at integer electron numbers when correlation is very strong. This is obtained without making any additional assumption or imposing any ad hoc constraint. Finally, we draw our conclusions and discuss some perspectives. Hartree (effective) atomic units are used throughout.

Fractional particle numbers in KS DFT.—At zero temperature, open systems with fluctuating particle numbers have been first analyzed in the KS framework by considering statistical mixtures [4]. When dealing with DFT for quantum mechanical systems, we can work with pure states in which a degenerate system is composed by well separated fragments, and one focuses on the energy and density of one of the fragments alone [37–39]. A very simple example is a stretched H$_2^+$ molecule, in which on each proton we find, on average, 1/2 electron [13,19]. A key point to prove the existence of the derivative discontinuity is the (empirical) observation that, for integer particle numbers N, the energy E_N of an N-electron system in a given external potential is a concave-up function, i.e., $E_N \leq (1/2)(E_{N+1} + E_{N-1})$. This implies that for fractional electron numbers $Q = N + \eta$ (with $0 \leq \eta \leq 1$) the exact many-electron ground-state energy E_Q and density $\rho_Q(r)$ lie on the line connecting the values at the two adjacent integers:

$$E_{Q+1} = (1-\eta)E_{N+1} + \eta E_N,$$

$$\rho_{Q+1}(r) = (1-\eta)\rho_N(r) + \eta \rho_{N+1}(r).$$

In KS DFT, one usually aims at obtaining the exact quantities of Eqs. (1) and (2) by means of a noninteracting system of $Q = N + \eta$ electrons in the effective single-particle KS potential $v_{ee}(r;[\rho_Q])$, which necessarily changes as we change Q. The energy is then minimized by giving integer occupation to the N single particle KS spin orbitals with lowest eigenvalues and fractional occupation η to the frontier orbital(s), often called HOMO [40,41].

In the exact KS theory, the HOMO eigenvalue ϵ_{HOMO} is the derivative of the total energy of Eq. (1) with respect to the particle number Q, $(\partial E_Q/\partial Q) = \epsilon_{\text{HOMO}}$ [4,40]. Thus, the exact ϵ_{HOMO} is constant between any two adjacent integers (say, N and $N+1$) and equal to the interacting chemical potential $E_{N+1} - E_N$, jumping to a different value when crossing an integer. This “steplike” behavior of the KS ϵ_{HOMO} is not captured by the standard approximate functionals (see, e.g., Refs. [38,41,42]), unless imposed a priori via additional constraints in a spin-unrestricted framework, as, e.g., in Refs. [28,29,31]. The alignment of the exact KS HOMO eigenvalue with the interacting chemical potential implies that the exact KS one-body potential must jump by a constant Δ_{xc} (the derivative discontinuity) when crossing an integer, $v_i(r;[\rho_{N+1}]) - v_i(r;[\rho_N]) = \Delta_{xc}$ (see Fig. 1).

Strong-interaction limit.—The strong-interaction limit of DFT is given by the SCE functional $V_{ee}^{\text{SCE}}[\rho]$, defined as the minimum of the electronic interaction alone over all the wave functions yielding the density ρ [34,36,43],

$$V_{ee}^{\text{SCE}}[\rho] = \min_{\Psi} \langle \Psi | \hat{V}_{ee} | \Psi \rangle.$$

It can be shown [32,44,45] that in the low-density (or strong-interaction) limit the exact Hartree and exchange-correlation energy of KS theory tends asymptotically to $V_{ee}^{\text{SCE}}[\rho]$.

Physically, the functional $V_{ee}^{\text{SCE}}[\rho]$ portrays the strict correlation regime, where the position r of one electron determines all the other $N-1$ electronic positions r_i through the so-called co-motion functions, $r_i = f_i[\rho](r)$, some nonlocal functionals of the density [34,35,46,47]. Therefore, the net repulsion on an electron at position r due to the other $N-1$ electrons depends on r alone and can be exactly represented [33,34,46,47] by a local one-body potential,

$$\nabla v_{\text{SCE}}^{\text{ee}}[\rho](r) = -\sum_{i=2}^{N} \frac{r - f_i[\rho](r)}{|r - f_i[\rho](r)|^3},$$

which also is the functional derivative of $V_{ee}^{\text{SCE}}[\rho]$, $\delta V_{ee}^{\text{SCE}}[\rho]/\delta \rho(r) = \nabla v_{\text{SCE}}^{\text{ee}}[\rho](r)$ [32,33]. In terms of the co-motion functions, we have [34]

$$V_{ee}^{\text{SCE}}[\rho] = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \int dr \frac{\rho(r)}{N^2} \frac{1}{|f_i[\rho](r) - f_j[\rho](r)|}.$$
with total integer electron number M, as schematically illustrated in Fig. 2.

Actually, from Eq. (5) it is not evident that $V_{ee}^{\text{SCE}}[\rho]$ separates into the sum of contributions of the isolated fragments, because the interaction $[f_i[\rho](\mathbf{r}) - f_i[\rho](\mathbf{r})]^{-1}$ between two electrons on a given fragment may contribute significantly to the integral when \mathbf{r} spans the region of another fragment. However, we have recently shown [48] that another exact expression for $V_{ee}^{\text{SCE}}[\rho]$ is

$$V_{ee}^{\text{SCE}}[\rho] = \frac{1}{2} \int d\mathbf{r} \rho(\mathbf{r}) \sum_{i=2}^N \frac{1}{|\mathbf{r} - f_i[\rho](\mathbf{r})|}, \quad (6)$$

which separates into a sum of fragment contributions, showing explicitly that $V_{ee}^{\text{SCE}}[\rho]$ is size consistent.

We start from (quasi-)1D systems, for which we can construct the SCE solution analytically. The main findings and conclusions, however, should hold also for 2D and 3D systems [49]. Indeed, we have also performed a three-dimensional self-consistent calculation for a spherically symmetric density, for which we can deduce the fractional SCE solution from our 1D construction, finding similar results.

Figure 2 depicts the reasoning behind the construction of the SCE functional for Q electrons. In the illustrated example, we have solved the SCE problem for $M = 5$ electrons, for a density made of two well-separated identical fragments, each integrating to $Q = 2.5 = N + 0.5$ particles. We have then studied the “local” SCE solution on the fragments, indicated in Fig. 2 by black circles. Here, the positions $f_i(x)$ of the other four electrons are shown as a function of the position x of the first electron. The two black circles represent the “local” SCE solution on each fragment.

![FIG. 2 (color online). Simple example of the analysis used to deduce the SCE solution for fractional electron numbers: we considered a density with $M = 5$ electrons, made of two separated identical fragments (modeled here with two Gaussians), and we have studied the exact SCE solution on each fragment. The graphic shows the positions $f_i(x)$ of the other four electrons as a function of the position x of the first electron. The two black circles represent the “local” SCE solution on each fragment.](image-url)
The discontinuity in the HOMO for open shell systems (case in the upper panel of Fig. 1) from the self-consistent KS SCE is not just a unique result, but also an independent proof that the exact KS formalism should have this feature. In fact, we have only used the exact $V_{\text{ext}}^{\text{SCE}}[\rho_{Q}]$ in the KS self-consistent procedure, without imposing any other condition on our functional. Until now, this feature has only been captured in the context of lattice Hamiltonians [57] or by imposing it a priori in a spin-unrestricted framework [58], as, e.g., in Refs. [28,29,31].

From a practical point of view, our results could already be used to model transport through a correlated quantum wire or quantum dot, going beyond the lattice calculations of Refs. [25,27]. Our findings also provide novel insight for the construction of approximate exchange-correlation functionals: the challenge is to transfer this exact behavior into approximations for less extreme correlation regimes relevant for solid-state physics and chemistry (see Supplemental Material [50] for a test on the H atom). Another challenge is the construction of the SCE functional for general 3D geometry, for which a promising route (that can be generalized to open systems along the lines of this work) is given in Refs. [47,59].
We thank E. J. Baerends, O. Gritsenko, F. Malet, V. Staroverov, and G. Vignale for many insightful discussions. This work was supported by the Netherlands Organization for Scientific Research (NWO) through a Vidi grant.

[58] An exception to the spin-unrestricted construction is Ref. [13], which attempts to construct, in a spin-restricted framework, a functional showing the linear behavior of Eq. (1).