Samenvatting

(EEN NIEUWE SYNTHENSE VAN EPOTHILONMACROCYCLI)

Inhoud van dit proefschrift is de ontwikkeling van een nieuwe en efficiënte synthese van epothilon B (1) en D (2) bouwstenen. De verkregen bouwstenen werden verder toegepast in de opbouw van epothilonmacrocycli via een nieuwe cyclisatiestrategie (C6-C7-macroaldolisatie), welke mogelijk gemaakt wordt door de CrCl2-variant van de Reformatsky reactie. Bovendien werden deze bouwstenen ingezet, om lineaire voorlopermoleculen voor de uit de literatuur bekende macrolactonisatiestrategie te bereiden.

Schema 1 presenteert de retrosynthetische analyse van epothilon D (2). Een noordhalf-zuidhelft-strategie volgend, werd in het molecuul de ester en het C6-C7 aldol retrosynthetisch gesplitst, wat de bouwstenen 8 en 7 oplevert. De constructie van het zuidhelftmolecuul 7a werd eerder in onze werkgroep ontwikkeld[66] en de gevestigde methode was uitgangspunt voor de synthese van verdere zuidhelftbouwstenen, zoals 7b. De transformatie van 7a naar 7b werd door directe brominering met PhNMe2Br3 in hoge opbrengst bewerkstelligd. Op een vergelijkbare manier was ook een methylesterderivaat van 7b toegankelijk.

Schema 1. Retrosynthetische analyse van epothilone B en D)

Schema 2 beschrijft de synthese van de beschermde noordhelftbouwstenen 270. Neryl bromide (220a) reageert als electofiel kwantitatief met het Na-anion van 219a naar 250a. SeO₂-gekatalyseerde allylische oxidatie werd gevolgd door regio- en enantioselectieve hydrogenering naar 266 met behulp van Noyori’s katalysator Ru[(R)-BINAP](OAc)₂. Decarboxylatie met TFA en bescherming van de primaire hydroxygroep resulteert in de acyloinesters 11b en 11c, welke met het fosfoniumzout 9c werden omgezet in de gewenste olefines 270.
Samenvatting

(Schema 2. Synthese van een compleet C7-C21 noordhalf bouwsteen)

De toegepaste sequentie van reacties is kort en erg efficiënt en maakt een synthese van de C7-C21-noordhelftbouwstenen 270a en 270b in een gering aantal reactiestappen mogelijk. 270a en 270b zijn behalve verschillende alcoholbeschermgroepen wezenlijk gelijk aan bekende epothilon bouwstenen.

Racemaatsplitsing van het C15-stereocentrum in 11b werd bereikt met behulp van twee verschillende methodes, chemisch en enzymatisch. De chemische methode maakt gebruik van chromatografische scheiding van C15-diastereomere (R)-2-methoxy-2-fenylacyl esters. De tweede methode is gebaseerd op enzymatische enantioselectieve esterhydrolyse van 11b. Om een beter inzicht in enzymatische acyloinacetaatresoluties te verkrijgen, werden zes commerciële lipase-enzymen met 16 verschillende acyloinacetaten onderzocht (schema 3). Uit dit onderzoek blijkt, dat Pseudomonas cepacia lipase (PS) en Candida antarctica lipase B (CAB) geschikt zijn voor kinetische racemaatsplitsing van dit soort substraten.

(Schema 3. Lipase-gekatalyseerde kinetische resolutie van acyloinacetaten)
Een noordhelft bouwsteen met de correcte 15S stereochemie werd ingezet in de synthese van de lineaire epothilonvoorloper **278b**, welke met de CrCl₂-bemiddelde Reformatsky reactie naar een enkele epothilonmacrocyclus diastereommer **278c** (met onbekende C6-C8-stereochemie) werd omgezet (schema 4). Ontscherming van de TBS-beschermgroep en vergelijking van de NMR-spectra van natuurlijk epothilon D openbaarde helaas, dat deze nieuwe cyclisatiemethode niet het gewenste C6-C8 diastereomeer oplevert.

(Schema 4. Macroaldolisatiestrategie in de synthese van epothilonmacrocycli)

Daarom werd onderzoek met betrekking tot macrolactonisatie uitgevoerd. Dit leidde tot de synthese van een compleet lineaire voorloperverbinding **292** (schema 5), welke in drie reactiestappen omgezet zou kunnen worden naar epothilon D.

(Schema 5. Lineaire epothilon D precursor.)