Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>List of abbreviations</td>
<td>8</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>General introduction</td>
<td>13</td>
</tr>
<tr>
<td>PART 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Immunophenotyping of acute leukemia: introduction into the WHO2008</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>NTVH 2009;6:205-10</td>
<td></td>
</tr>
<tr>
<td>Chapter 3</td>
<td>The role of flow cytometry in diagnosing acute leukemias: two case reports</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Leuk Res. 2009 Jul;33(7):e77-80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leuk Res. 2011 May;35(5):693-6</td>
<td></td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Acute leukemias of ambiguous lineage: diagnostic consequences of the WHO2008 classification</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Leukemia. 2010 Jul;24(7):1392-6</td>
<td></td>
</tr>
<tr>
<td>Chapter 5</td>
<td>A threshold of 10% for myeloperoxidase by flow cytometry is valid to classify acute leukemia of ambiguous and myeloid origin</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Cytometry B Clin Cytom. 2013 Jan 16</td>
<td></td>
</tr>
<tr>
<td>Chapter 6</td>
<td>MicroRNA profiling can classify acute leukemias of ambiguous lineage as either acute myeloid leukemia or acute lymphoid leukemia</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Clinical cancer research 2013, ahead of print</td>
<td></td>
</tr>
<tr>
<td>PART II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Impaired antigen presentation in neoplasia: basic mechanisms and implications for acute myeloid leukemia</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Immunotherapy. 2010 Jan;2(1):85-97</td>
<td></td>
</tr>
<tr>
<td>Chapter 8</td>
<td>High class II-associated invariant chain peptide (CLIP) expression on aberrant myeloid progenitor cells is associated with increased relapse risk in acute myeloid leukemia</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Submitted</td>
<td></td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Absence of class II-associated invariant chain peptide on leukemic blasts of patients promotes activation of autologous leukemia-reactive CD4+ T cells</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Cancer Res. 2011 Apr 1;71(7):2507-17</td>
<td></td>
</tr>
</tbody>
</table>
PART II

Chapter 10 The role of immunotherapy in leukemia
Immunotherapy. 2010 Jan;2(1):69-83

Chapter 11 Priming of functional PRAME and WT1 specific CD8+ T cells in healthy donors but not in AML patients in first complete remission: implications for immunotherapy
Oncoimmunology. 2013 Apr 1;2(4):e23971.

Chapter 12 Procedures for the expansion of CD14+ precursors from acute myeloid leukemic cells to facilitate dendritic cell based immunotherapy
Immunotherapy, ahead of print

Chapter 13 CML lysate-loaded dendritic cells induce specific T cell responses towards leukemia progenitor cells indicating their potency for application in active specific immunotherapy
Immunotherapy. 2011 Apr;3(4):569-76

Chapter 14 Targeting Toll-like receptor 7/8 enhances uptake of apoptotic leukemic cells by monocyte-derived dendritic cells but interferes with subsequent cytokine-induced maturation
Cancer Immunol Immunother. 2011 Jan;60(1):37-4

Chapter 15 Apoptotic blebs from leukemic cells as a preferred source of tumor-associated antigen for dendritic cell-based vaccines
Submitted

PART IV

Chapter 16 Genereal discussion and future perspectives
Nederlandse samenvatting voor niet ingewijden