Effect of Warm-Up and Precooling on Pacing During a 15-km Cycling Time Trial in the Heat

Koen Levels, Lennart P.J. Teunissen, Arnold de Haan, Jos J. de Koning, Bernadet van Os, and Hein A.M. Daanen

Purpose: The best way to apply precooling for endurance exercise in the heat is still unclear. The authors analyzed the effect of different preparation regimens on pacing during a 15-km cycling time trial in the heat.

Methods: Ten male subjects completed four 15-km time trials (30°C), preceded by different preparation regimens: 10 min cycling (WARM-UP), 30 min scalp cooling of which 10 min was cycling (SC+WARM-UP), ice-slurry ingestion (ICE), and ice slurry ingestion + 30 min scalp cooling (SC+ICE).

Results: No differences were observed in finish time and mean power output, although power output was lower for WARM-UP than for SC+ICE during km 13–14 (17 ± 16 and 19 ± 14 W, respectively) and for ICE during km 13 (16 ± 16 W). Rectal temperature at the start of the time trial was lower for both ICE conditions (~36.7°C) than both WARM-UP conditions (~37.1°C) and remained lower during the first part of the trial. Skin temperature and thermal sensation were lower at the start for SC+ICE.

Conclusions: The preparation regimen providing the lowest body-heat content and sensation of coolness at the start (SC+ICE) was most beneficial for pacing during the latter stages of the time trial, although overall performance did not differ.

Keywords: thermoregulation, power output, ice slurry, scalp cooling

Athletes generally perform active warm-up to prepare for an upcoming event. This is proposed to induce beneficial physiological responses. However, warm-up also elevates the core temperature, causing fatigue and reduced endurance performance in the heat. Precooling may attenuate this detrimental effect by increasing the heat-storage capacity of the body and is therefore suggested to be a more beneficial preparation regimen than warming up. Precooling appears to be an effective and practical method to precool the body core. The lower core temperature resulting from ice-slurry ingestion may prevent or delay the reduction in central neural drive that leads to performance decrements in the heat.

Next to cooling the core, cooling the skin could also affect performance. Recently, a new convective cooling method for reducing chemotherapy-induced hair loss has become available, using glycol-perfused caps to cool the skin of the scalp. Possible mechanisms include a positive effect on the perception of coolness, motivation to continue exercise, and reduction of cardiovascular and thermoregulatory demands. The scalp may be a suitable cooling area, as it is easily accessible and close to the thermosensitive region of the face. In addition, possible brain cooling may help maintain the central neural drive during exercise in the heat. Both the sensation of coolness and possible brain cooling might translate into an improvement in self-paced exercise performance mediated by the rating of perceived exertion (RPE), even when core temperatures are well below critical values associated with fatigue.

Although both warm-up and precooling have proved to be beneficial for endurance-exercise performance, it remains unclear which preparation regimen should be preferred for relatively short self-paced endurance exercise in the heat. Furthermore, the additive effect of scalp cooling when the core is cooled or heated remains unclear. Therefore, the main goal of this study was to investigate the effect of different preparation regimens (involving warm-up, ice-slurry ingestion, and scalp cooling) on pacing and performance during a 15-km cycling time trial (TT) in the heat.

Methods

Subjects

Ten healthy and physically active male recreational cyclists (age 24 ± 5 y, height 187 ± 7 cm, weight 77 ± 6 kg) familiar with cycle-ergometer testing participated in this study. The study was approved by the ethics committee of TNO, The Netherlands.
Overview
Subjects visited the laboratory 5 times. On the first visit they were familiarized with the experimental setup and distance of the TT. The 4 following sessions involved the 15-km TT in the heat preceded by 1 of the different preparation regimens: active warm-up of 10 minutes of cycling (WARM-UP), scalp cooling + active warm-up of 10 minutes of cycling (SC+WARM-UP), ice-slurry ingestion (ICE), or scalp cooling + ice-slurry ingestion (SC+ICE).

Interventions
In the precooling trials (ICE and SC+ICE), a decrease in core temperature was created by ingesting 2 g/kg body mass (BM) ice slurry within 5 minutes. Syrup (containing ~6 g carbohydrates) was added for flavor. This period was followed by 15 minutes of rest. In the prewarming trials (WARM-UP and SC+WARM-UP), the subjects cycled at a moderate power of 2 W/kg BM for 10 minutes. SC was accomplished by wearing a neoprene-covered silicone cooling cap (Paxman, Huddersfield, UK) connected to a cooling machine (Paxman cooler PScalpC-1, Paxman, Huddersfield, UK) for 30 minutes. Temperature of the coolant was ~9°C to ~10°C.

Protocol
Each session started in a 22°C climatic chamber (Weiss Enet, Tiel, The Netherlands) with 20-minute habituation, followed by baseline measurements and the intervention protocol. Subsequently, during a 5-minute break, subjects were transferred to an adjacent 30°C, 50% relative humidity climatic chamber. This was followed by a short final preparation period of 3-minute cycling at 120 W. Hereafter, subjects performed the 15-km TT on a cycle ergometer (Lode, Groningen, The Netherlands). During the trial subjects were blind to performance measures but were informed of completed distance each kilometer. The 4 TTs were allocated in balanced order and at least 3 days apart.

Measurements
During the TTs, power output (PO) was recorded every second. Rectal temperature \((T_{rc})\) was measured every second using a rectal thermistor (Yellow Springs Instruments 700 series, Yellow Springs, OH, USA) inserted 10 cm beyond the anal sphincter. A weighted average of 8 iButtons (DS1922L, Maxim Integrated Products Inc, Sunnyvale, CA, USA) resulted in 10-second values for mean skin temperature \((T_{sk})\), as described by ISO9886. Heart rate was recorded at 5-second intervals (Polar Electro, Finland). For the TT, data were reduced to 1-km values.

Thermal sensation (TS) and thermal comfort (TC) were measured every 5 km on a 9-point and 5-point scale, respectively. RPE was measured every kilometer on a 20-point scale.

Statistics
Experimental condition was the independent variable, whereas PO, \(T_{rc}\), \(T_{sk}\), heart rate, RPE, TS, and TC were the dependent variables. Significance of effects over time was determined using 2-way ANOVAs for repeated measurements with Bonferroni correction (SPSS 17.0, SPSS Inc, Chicago, IL, USA). One-way ANOVAs were used to determine the significance of effects of the experimental conditions at separate kilometers, as well as on finish times and average PO. Statistical significance was set at the 5% level. Values are reported as mean ± SD.

Results
Effect of Preparation Regimens
In Figure 1, \(T_{rc}\) and \(T_{sk}\) before and during the TT are shown. Before the start of the intervention, \(T_{rc}\) and \(T_{sk}\) were similar. Ice-slurry ingestion resulted in a cooler core at the start of the TT than performing a warm-up \((P < .05)\). There was a trend that \(T_{rc}\) was more reduced in SC+ICE than in ICE \((P = .06)\). At the start of the TT, both \(T_{sk}\) and TS were lower for SC+ICE than for the other conditions \((P < .05)\). TC was similar.

Time-Trial Performance
In Figure 2a, the average PO per kilometer of the TT is shown. There was no overall effect between conditions on PO and finish time. However, during kilometers 13 and 14, PO for SC+ICE (231 ± 23 and 239 ± 24 W, respectively) was significantly higher than for WARM-UP (214 ± 28, \(P = .01\), and 219 ± 27 W, \(P = .02\), respectively). In addition PO for ICE (230 ± 32 W) was higher than for WARM-UP during kilometer 13 \((P = .03)\).

Physiological and Perceptual Responses
Differences in \(T_{rc}\) and \(T_{sk}\) between the ice-slurry and warming-up conditions were observed during the first half of the trial \((P < .05)\). Overall, \(T_{sk}\) was significantly lower for SC+ICE than for WARM-UP \((P = .02)\). Heart rate for WARM-UP was higher than for SC+ICE and ICE during the initial stages of the trial, but no differences were found after 3 km.

No overall effect for RPE was observed, but at separate kilometers in the final stages of the TT, some RPE scores deviated (Figure 2b). No effects for TS and TC were observed during the trial.

Discussion
This study showed that the lower the body temperature and sensation of coolness at the start of the TT, the more beneficial it was for the pacing profile at the final stages. This finding agrees with previous precooling experiments on longer cycling trials (40–90 min), showing physi-
Effect of Warm-Up and Precooling on Pacing

Figure 1 — (a) Rectal and (b) skin temperature preintervention (PI), at the start of the time trial (km 0) and averaged per kilometer of the time trial. *Significant difference between scalp cooling (SC) + warm-up and SC + ice-slurry ingestion (ICE) ($P < .05$). #Significant difference between SC+WARM-UP and ICE ($P < .05$). For clarity of the figure, no error bars are displayed.

...ological differences in the first part of the trial and pacing adjustments at the final stages. However, we did not find an overall effect on performance, which is in contrast to the referenced studies. Although direct comparison is difficult due to methodological differences, it appears that exercise duration is important for obtaining overall performance benefits from precooling. Nevertheless, a higher work rate near the finish as a result of precooling may still be beneficial during tactical races.

Precooling the core with ice-slurry ingestion appeared to be more effective in accomplishing pacing benefits than precooling the scalp. Scalp precooling led to a marginal decrease in thermal strain and a slightly cooler sensation at the start of the TT, but pacing and performance benefits...
Figure 2 — (a) Power output and (b) rating of perceived exertion during the time trial. *Significant difference between warm-up and scalp cooling (SC) + ice-slurry ingestion (ICE) \((P < .05)\). #Significant difference between warm-up and ICE \((P < .05)\). †Significant difference between warm-up and SC+ICE \((P < .05)\). For clarity of the figure, no error bars are displayed.

during the trial were negligible. The limited physiological effects of scalp cooling may be due to the insulative capacity of the skull\(^{19}\) and the small cooling area. The absence of a perceptual effect on performance confirms the results of Barwood et al.\(^{20}\) who found no effect of thermal perception on the anticipatory selection of PO.

RPE differed during the final stages of the TT. The higher RPE for WARM-UP was accompanied by a significantly lower PO than with SC+ICE. This finding seems to disagree with the concept that athletes maintain a similar RPE template across conditions of similar duration and adjust their work rate accordingly.\(^{21}\)

Carbohydrate ingestion via syrup might be considered a confounding factor. However, it is unlikely that the ingestion of only 6 g carbohydrates 20 minutes before medium-duration aerobic exercise \(<45\ \text{min}) improves
performance in the final stages by extending body glyco-
Gen content22 or by nonmetabolic pathways.23

In conclusion, the preparation regimen providing
11. Nybo L, Nielsen B. Hyperthermia and central fatigue
12. Schlader ZJ, Simmons SE, Stannard SR, Mundel T. The
independent roles of temperature and thermal perception
in the control of human thermoregulatory behavior. Physiol
13. Tikuisis P, Meunier P, Jubenville CE. Human body surface
area: measurement and prediction using three dimen-
PubMed doi:10.1007/s0042410100484
Bridge MW. The effects of head cooling on endurance and
neuroendocrine responses to exercise in warm conditions.
15. Ely BR, Cheuvront SN, Keneffic RW, Sawka MN. Aerobic
performance is degraded, despite modest hyperthermia, in
141. PubMed
Evaluation of Thermal Strain by Physiological Measure-
ments. Geneva, Switzerland: International Standardization
17. Gagge AP, Stolwijk JA, Hardy JD. Comfort and thermal
sensations and associated physiological responses at
human brain cooling during cold-water near-drowning. J
in thermal perception is not a driver of anticipatory
exercise pacing in the heat [online publication ahead of
bjsports-2011-090536.
21. Tucker R, Noakes TD. The physiological regulation of
pacing strategy during exercise: a critical review. Br J
22. Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbo-
141.2011.585473
23. Rollo I, Williams C. Effect of mouth-rinsing carbohy-
00000000-00000
References
1. Gray S, Nimmo M. Effects of active, passive or no
warm-up on metabolism and performance during high-

Acknowledgments
Authors Levels and Teunissen contributed equally to this article.