CONTENTS

Summary / Samenvatting

Chapter 1. Introduction

1.1 Rationale and objectives of the research
1.2 Outline of the thesis
1.3 Lithospheric/cratonic diamonds
1.3.1 Origin and occurrence worldwide
1.3.1.1 Archaean cratons
1.3.1.2 Transport in kimberlites
1.3.1.3 Xenocrystic origin
1.3.2 Pressure-Temperature regime
1.3.3 Paragenesis
1.3.4 Genetic origin of inclusions
1.3.5 Ages: Constraints on craton evolution
1.3.6 Carbon isotopes: Constraints on sources of carbon
1.3.7 Nitrogen content and aggregation
1.4 Geological setting of diamonds from the Siberian Craton
1.4.1 Siberian Craton
1.4.2 Anabar Province
1.4.3 Diamondiferous kimberlite pipes

Chapter 2. Samples: Description of the collection

2.1 Diamond collection
2.2 Mineral and melt inclusions
2.2.1 Paragenesis
2.2.2 Formation temperatures
2.3 CL imaging of diamonds
2.3.1 Internal growth structures
2.3.2 CL haloes
2.3.2.1 Characteristics of the diamond CL halo
2.3.2.2 Possible mechanisms of CL halo formation
2.3.2.3 Origin of CL haloes

Chapter 3. Three-dimensional cathodoluminescence imaging and electron backscatter diffraction: Tools for studying the genetic nature of diamond inclusions

Abstract
1. Introduction
2. Sample
3. Methods: technique on combined FIB-SEM instrument
3.1 Electron backscatter diffraction
3.2 Slice and View: micron-scale milling and CL and SE imaging
3.3 3D reconstruction 65
3.4 Electron microprobe analyses 66
4 Results 66
4.1 Diamond characteristics 66
 4.1.1. CL: internal structure of the diamond 66
 4.1.2. FTIR: nitrogen content and mantle residence time 67
 4.1.3. Birefringence 67
4.2. Mineral inclusions and CL haloes 70
 4.2.1. Mineral inclusions 70
 4.2.2. Diamond CL haloes around chromite inclusions 70
4.3 Electron backscatter diffraction: diamond and inclusions 73
4.4 Slice and View: micron-scale milling and CL imaging 74
 4.4.1. Chromite-3 74
 4.4.2. Diamond CL halo 74
 4.4.3. Micron-scale diamond growth layering 75
 4.4.4. Milling artefacts 77
4.5 3D reconstruction of the chromite and surrounding diamond 77
5. Discussion 77
5.1 Evaluation of the combined FIB-SEM technique applied to diamond 77
5.2 Genetic origin of the inclusions 78
5.3 Interpretation of the diamond CL halo 80
6. Conclusions 81
Acknowledgements 82
References 83

Chapter 4. Micron-scale coupled carbon isotope and nitrogen abundance variations in diamonds: Evidence for episodic diamond formation beneath the Siberian Craton 87

Abstract 89
1. Introduction 90
2. Regional geology and diamond samples 91
3. Analytical techniques 94
 3.1. Sample preparation 94
 3.2. Cathodoluminescence imaging 94
 3.3. Secondary Ion Mass Spectrometry 95
 3.4. Fourier Transform Infrared Spectrometry 95
4. Results 96
 4.1. Internal (growth) structures 96
 4.2. Coupled carbon isotope - nitrogen abundance core-rim profiles 96
 4.3. High resolution carbon isotope profiles 100
5. Discussion 102
 5.1. Temperature and time constraints from FTIR analyses 102
 5.1.1. Intra-diamond variation 104
4.5 Nitrogen isotope composition (combustion data).

5. Discussion

5.1 The history of formation of the diamond
 5.1.1 Two discrete diamond growth stages: evidence from internal structure, N content and aggregation
 5.1.2 Pressure evolution during two-stage formation inferred from clinopyroxene compositions
 5.1.3 Re/Os isotope ages evidence for two stage growth
 5.1.4 Temperature constraints from FTIR
 5.1.5 Carbon isotope composition and nitrogen concentrations – trends and correlations
 5.1.6 Interpretation of nitrogen isotope data
 5.1.7 Conceptual model for formation of diamond 1703

5.2 Genetic relationships between eclogitic diamonds from kimberlites and eclogite xenoliths
 5.2.1 Constraints from clinopyroxene in diamonds and diamondiferous eclogites
 5.2.2 Potential carbon isotope stratigraphy in the cratonic lithospheric mantle

6. Conclusions

Acknowledgements

References

Chapter 7. Synthesis

7.1 Genetic origin of inclusions in diamonds
7.2 Sources of carbon in the mantle
7.3 Timescale of diamond growth
7.4 Implications: Constraints on origin, evolution and timing of different diamond-forming fluids/melts in the SCLM beneath the Siberian Craton

7.5 Summary of main conclusions
7.6 Recommendations for future research

References

Appendices

A. Analytical techniques
 A.1 Sample preparation
 A.2 Cathodoluminescence imaging (CL)
 A.3 Fourier transform infrared analysis (FTIR)
 A.4 Secondary ion mass spectrometry (SIMS)
 A.5 Isotope ratio mass spectrometry (SIRMS)
 A.6 Electron backscatter diffraction (EBSD)
 A.7 Focused ion beam micron-slicing (FIB)
 A.8 Electron microprobe analysis (EMP)
 A.9 Negative thermal ionisation mass spectrometry (N-TIMS)
A.10 High resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) 240
A.11 Quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) 240

B. Cathodoluminescence imaging background 241

C. Reproducibility of standards for carbon- and nitrogen isotope SIMS analyses 243
 C.1 Reproducibility of standards for carbon isotope SIMS analyses 243
 C.2 Reproducibility of standards for nitrogen isotope SIMS analyses 245

D. Cathodoluminescence imaging and internal growth structures of other intensively studied diamonds 245

E. Analytical data of other intensively studied diamonds 250
 E.1 CL images of the diamonds with core-rim traverses with carbon isotope (SIMS), nitrogen abundance (SIMS and FTIR) and nitrogen aggregation (FTIR) spot analyses 250
 E.2 Carbon isotope (SIMS), nitrogen abundance (SIMS and FTIR) and nitrogen aggregation (FTIR) analyses along the core-rim traverses in the diamonds 254
 E.3 Carbon isotope (SIMS) analyses for detailed profiles in diamonds #E-1703 and #P-4167 256
 E.4 Graphs of co-variation of carbon isotope, nitrogen abundance and nitrogen aggregation state 257
 E.5 FTIR theoretical isotherm diagrams 259

F. Nitrogen isotope SIMS analyses 262

G. Supplementary data associated with chapter 3 263
 G.1 The complete set of SE images from figure 8 263
 G.2 The complete set of CL images from figure 8 263
 G.3 Rotating movies of the 3D models of SE images from figure 9 263
 G.4 Rotating movies of the 3D models of SE images from figure 9 263

H. Supplementary data associated with chapter 4 263
 H.1 Detailed descriptions of the internal growth structures of the diamonds 263
 H.2 Coloured CL images of the diamonds 265
 H.3 Detailed description of coupled co-variation between carbon isotope composition and nitrogen concentration for the diamonds 265
 H.4 Copy of figure 1 267

I. Supplementary data associated with chapter 5 269
 I.1 Detailed descriptions of the variation in nitrogen content and aggregation state in the diamonds 269
 I.2 Plots of Os isotope ratio versus reciprocal common Os concentration 270

Acknowledgements / Dankwoord 273
Curriculum Vitae 275