Overexpression of a M_r 110,000 Vesicular Protein in Non-P-Glycoprotein-mediated Multidrug Resistance

Departments of Pathology [R. J. S., G. L. S., P. K., P. v. d. V. C. J. L. M. M.], and Oncology [H. J. B., T. H. M. v. H., C. K. v. K., H. M. P.], Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Arizona Cancer Center, Tucson, Arizona 85724 [W. S. D.]; Department of Cytogenetics, City of Hope, National Medical Center, Duarte, California 91010 [M. L. S.]; and Division of Medical Oncology, University Hospital, Groningen, 9713 EZ, the Netherlands [E. G. E. d. V.]

Abstract

A M_r 110,000 protein (p110) is overexpressed in P-glycoprotein-negative multidrug-resistant tumor cell lines of different histogenetic origins. These cell lines show an ATP-dependent drug accumulation defect, suggesting the presence of drug transporter molecules different from P-glycoprotein. Immunohistochemical staining with a p110-specific monoclonal antibody (LRP-56) showed that, like P-glycoprotein, the molecule has a high expression in normal epithelial cells and tissues chronically exposed to xenobiotics and potentially toxic agents, such as bronchial cells, cells lining the intestines, and kidney tubules. Staining of LRP-56 is primarily cytoplasmic, in a coarsely granular fashion, indicating that it reacts with a molecule closely associated with vesicular/lysosomal structures. Involvement of p110 in the energy-dependent drug transport process present in the cell lines is unknown.

Introduction

Following exposure to chemotherapeutic drugs, tumor cells can acquire resistance to structurally and functionally unrelated compounds, termed MDR. In tumor cell lines the MDR phenotype was found to be frequently associated with the overexpression of the MDR1 gene, coding for Pgp. Pgp is inserted in the plasma membrane and acts as a drug efflux pump, lowering the intracellular drug concentration by energy-dependent extrusion of drugs from the cell (1). Overexpression of MDR1 mRNA and Pgp has been observed in several human cancers derived from tissues that normally express Pgp, such as adrenal gland and colon, but also in tumors originating from Pgp-negative cells, such as melanomas and sarcomas (2–4). The clinical role of this type of MDR is still uncertain, and MDR1 mRNA or Pgp overexpression may be clinically relevant only in certain tumor types. Recently we selected the Pgp-negative MDR cell line 2R120 by stepwise doxorubicin exposure of the SW-1573 non-small cell lung carcinoma cell line to 120 μM doxorubicin. The SW-1573/2R120 MDR cell line is characterized by energy-dependent reduction of drug accumulation and exhibits cross-resistance to vincristine, gramicidin D, and etoposide. No MDR1 gene overexpression or Pgp is detectable in this cell line. In contrast, the SW-1573/2R160 subline, obtained by exposure of 2R50 cells to a slightly higher doxorubicin concentration (160 μM), displays strong MDR1 gene overexpression (5–7). The objective of the present study was to search for putative transporter molecules that might account for the accumulation defect in the non-Pgp SW-1573/2R120 MDR cell line. The overexpression of mRNA coding for a putative transporter molecule in a non-Pgp MDR cell line has very recently been reported (8). Here we approached this issue by attempting to raise monoclonal antibodies identifying molecules overexpressed in the SW-1573/2R120 MDR cell line.

Materials and Methods

Cell Lines. The Pgp-negative MDR SW-1573/2R120 cell line was derived by stepwise selection with doxorubicin up to 120 μM (5). The RFSs for this cell line are 4/17/45 (for doxorubicin, vincristine, and etoposide, respectively). The non-Pgp revertant 2R120 Rev was then obtained by omitting doxorubicin from the culture medium for over 9 months (RFS 3/28), whereas the Pgp-positive MDR SW-1573/2R160 cell line was obtained from 2R50 by selection with a doxorubicin concentration of 160 μM (RFS 35/480/1203). Occasional use was made of the 1R500 Pgp-positive cell line, which had been selected from SW-1573 at a 500 μM doxorubicin concentration (9), and displays a slightly higher level of MDR than the 2R160 cell line used in most experiments.

The non-Pgp MDR SW-1573/2R120-derived fusant cell lines F6.1. F6.2, F6.3, and F6.4 were obtained by somatic cell fusions between lethally γ-irradiated, resistant donor SW-1573 cells and drug-sensitive SW-1573/MDR acceptor cells. These fusants showed drug accumulation defects (10).

The SW-1573 1:1 MDR1 transfactant shows strong MDR1 mRNA expression and intermediate immunocytochemical staining for Pgp. The transfactant was obtained from the parent cell line SW-1573 S1 using the expression construct pCMVMDR1 containing a full-length wild type MDR1 complementary DNA under control of the CMV promoter (11).

Pgp-negative MDR cell lines were derived by stepwise selection with doxorubicin [RFSs for doxorubicin, vincristine, and etoposide, respectively: GLC4/ADR lung cancer cell line, 122/186/66 (2); HT1080/DR4 fibrosarcoma cell line, 222/25/837 (13)] or with mitoxantrone [MCF7/Mitox breast carcinoma cell line, 8/22/26 (14); 8226/MR4 myeloma cell line; RFS for doxorubicin and mitoxantrone, respectively, 4/12 (15)].

Pgp-positive MDR cell lines were derived by stepwise selection with doxorubicin. RFSs: MCF7/D40 breast carcinoma cell line, 75/190/11 (14); A2780AD ovary carcinoma cell line, 160 [doxorubicin (16)]; H134AD ovary carcinoma cell line, RF 250 [doxorubicin (17)]; 8226/Dox40 myeloma cell line, RF 326 [doxorubicin (18)].

Monoclonal Antibody Production. BALB/c mice received injections of 1.5 × 10⁶ 2R120 cells in complete Freund’s adjuvant (Difco, Detroit, MI) into footpads of hind legs and after 18 days booster injections with 1.0 × 10⁶ 2R120 cells in PBS into both footpads. Three days later draining popliteal lymph nodes were isolated. Lymph node cells and SP2/0 myeloma cells were fused as described earlier (19). Hybrid cells secreting antibodies of interest were selected by enzyme-linked immunosorbent assay with acetone-fixed (5 min, 70%) 2R120 (strong/positive staining) and SW-1573 (weak/negative staining)-coated 96-well plates. The LRP-56 hybridoma was subcloned three times by limiting dilution. LRP-56 immunoglobulin was purified from ascites by protein A-Sepharose affinity chromatography.

Immunohistochemistry. Cytocentrifuge preparations of tumor cell lines were air-dried, fixed in acetone for 5 min, and incubated for 60 min with culture supernatants. Subsequently staining was visualized using an avidin-
Formed with lysates of SW-1573/2R120 and HTI1080/DR4 cells, incubated with \(^{35}S\)methionine in the presence of tunicamycin (0.018 μg/mL; Sigma; preventing N-glycosylation) or phenyl-N-acetyl-a-D-galactosaminide (2.5 μg/mL; Sigma; preventing O-glycosylation). Presence of sizable sugar moieties was also studied by post-precipitation treatments with N-glycosidase F (0.1 unit/100 μL; Boehringer Mannheim), or a mixture of neuraminidase (3 milliunits/100 μL) and O-glycosidase (1 milliunit/100 μL; Boehringer Mannheim).

Results and Discussion

Using the 2R120 cell line for monoclonal antibody production, we selected an IgG2b monoclonal antibody (LRP-56) for strong immuno-chemical reactivity with 2R120 (Fig. 1b) compared to the parental SW-1573 cell line (Fig. 1a), whereas only 1–3% of the cells from the Pgp-positive 2R160 cell line stained positive (Fig. 1c). Staining of LRP-56 was primarily in the outer cytoplasmic zone, in a granular fashion (Fig. 1d), suggesting that it reacts with molecule(s) closely associated with endoplasmic reticular/lysosomal structures. Staining of the plasma membrane was not prominent. Several other SW-1573-derived cell lines were studied to establish a possible relationship between non-Pgp-mediated MDR and LRP-56 staining: (a) 2R120 cells cultured without drug for 2–4 weeks still exhibited strong immuno-chemical reactivity, showing that staining was not related to acute exposure to drugs; (b) the revertant cell line 2R120-Rev, which exhibited only a low degree of residual drug resistance after culturing without drug for over 9 months, had almost returned to parental staining level (Table 1); (c) hybrid SW-1573 derived cell lines obtained by fusion of parental cells with non-Pgp MDR cells stained positive with LRP-56. After transfer of genomic DNA these fusant cell lines obtained the MDR phenotype and a drug accumulation defect, without expressing MDR1 Pgp mRNA (10). In contrast, the Pgp transfectant cell line SW-1573 1.1 which overexpresses the MDR1 gene\(^a\) did not show increased LRP-56 staining (Table 1). Up-regulation of the molecule(s) detected by LRP-56 was found to be

\(^a\) F. Baas et al., unpublished data.
Table 1. Detection of Pgp and pHL10 in various SW-1573 (human lung cancer) cell lines by JSB-1 and LRP-56 monoclonal antibodies

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Pgp</th>
<th>pHL10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW-1573</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2R120</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2R160</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2R120 Rev (non-Pgp revertant)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F6.1-4 (non-Pgp fusants)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>SW1573.1.1 (Pgp transfectant)</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Cyto centrifuge preparations were scored according to the following scale: no, -; weak, +; intermediate, ++; strong, +++.

Table 2. LRP-56 staining of various couples of parental, sensitive tumor cell lines and MDR tumor cell lines with drug accumulation defects

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>Parental line</th>
<th>MDR line</th>
<th>Parental line</th>
<th>MDR line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pgp-negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung cancer</td>
<td>SW-1573</td>
<td>2R120</td>
<td>+ (10)</td>
<td>+++ (86)</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>MCF-7</td>
<td>MCF-Mito</td>
<td>+ (5)</td>
<td>+++ (92)</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>HT1080</td>
<td>HT1080/ADR</td>
<td>+ (96)</td>
<td>+++ (96)</td>
</tr>
<tr>
<td>Melanoma</td>
<td>8226S</td>
<td>8226/MR40</td>
<td>-</td>
<td>++ (80)</td>
</tr>
<tr>
<td>Pgp-positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>A2780</td>
<td>2780AD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>MCF-7</td>
<td>MCF-Mito</td>
<td>-</td>
<td>+ (2)</td>
</tr>
<tr>
<td>Myeloma</td>
<td>8226S</td>
<td>8226/MR40</td>
<td>-</td>
<td>+ (30)</td>
</tr>
</tbody>
</table>

Staining was scored according to the following scale: no, -; weak, +; intermediate, ++; strong, +++.
Numbers in parentheses, percentages of cells scored positive.

a frequent event, since three SW-1573 cell lines, independently selected for MDR by culturing in low levels of doxorubicin, all had increased staining compared to parental cells (data not shown).

Besides SW-1573 lung cancer-derived cell lines, several other non-Pgp MDR cell lines showing drug accumulation defects have been recently described, originating from different histotogic origins.
These include the GLC4/ADR small cell, lung cancer cell line (12), and cell lines derived from breast cancer [MCF7/Mito (14)], fibrosarcoma [HT1080/DR4 (13)], and myeloma [8226/MR40 (15)]. These lines do not overexpress MDR1 and therefore might be candidates for expressing the protein(s) recognized by LRP-56. Staining of these cell lines with LRP-56 showed cytoplasmic, granular staining patterns similar to the 2R120 cells. Again, staining of the respective parental cell lines was negative or weak (Table 2). In certain instances, drug-sensitive cell lines known to express Pgp (MCF7/D40) were also observed to stain positively with LRP-56 (Table 2; Fig. 1c). Apparently, Pgp-mediated MDR and LRP-56 staining are not mutually exclusive within the same resistant tumor cell line.

Immunoprecipitation studies with LRP-56 and four different non-Pgp MDR cell lines (SW-1573/2R120, HT1080/DR4, MCF7/Mito, and GLC4/ADR) demonstrated a 110,000 molecule in all four cell lines (Fig. 2). Although the 110,000 band was expressed in certain parental cell lines, in all non-Pgp MDR cell lines it was overexpressed. Precipitations with lysates of SW-1573/2R120 and HT1080/DR4 cells, incubated with [35S]methionine in the presence of tunicamycin or phenyl-N-acetyl-α-D-galactosaminide did not lead to a detectable shift in molecular weight of the M1, 110,000 band, showing that large N-linked or O-linked carbohydrates are not attached to this molecule.

Because expression in normal tissues might provide information regarding the physiological role of the protein recognized by LRP-56, immunohistochemical studies of certain human tissues were performed. Strong staining was observed in aceton-fixed, frozen sections, and to a lower degree, also in formalin-fixed paraffin tissue sections. Interestingly, LRP-56 staining revealed staining patterns similar to those we and others have described earlier for Pgp expression (2, 20, 21). Thus, LRP-56 staining was most pronounced in epithelial cells/tissues chronically exposed to xenobiotic, potentially toxic agents, such as bronchial cells (Fig. 3c), cells lining the intest...
tines (Fig. 3b), and most tubules of the kidney (Fig. 3a). Moreover, as for Pgp, strong staining was observed in adrenocortical cells (Fig. 3d). Differences in the distribution of Pgp and LRP-56 staining were also noted, however. Whereas Pgp staining is chiefly at the plasma membrane, LRP-56 staining was primarily intracytoplasmic and coarsely granular. Differences were also noted for distinct tissue types. For example, in contrast to the Pgp-reactive antibodies JSB-1 and C219, LRP-56 did not stain liver bile canaliculi. On the other hand, LRP-56 strongly stained stratified epithelia, such as squamous and transitional epithelium. Collectively, these staining patterns suggest that the protein recognized by LRP-56, like Pgp, may be involved in a molecular transport mechanism. Its molecular weight of 110,000 argues against the possibility that LRP-56 might recognize the newly described multidrug resistance-associated protein, overexpressed in certain non-Pgp MDR cell lines, showing a single open reading frame of 1522 amino acids (8).

In conclusion, using a newly developed monoclonal antibody, we have demonstrated the overexpression of a M, 110,000 protein, shared by different non-Pgp MDR tumor cell lines showing drug accumulation defects. Transfer of the non-Pgp MDR phenotype to sensitive recipient SW-1573 lung cancer cells by cell fusion also resulted in LRP-56 staining, whereas staining was reduced in a drug-sensitive, partially reverted cell line. P110 is strongly expressed in nonmalignant epithelial cells with secretory or excretory functions. Staining of LRP-56 is primarily cytoplasmic, in a coarsely granular fashion, indicating that it reacts with a molecule closely associated with vesicular/lysosomal structures. It is tempting to speculate that, like Pgp, the molecule recognized by LRP-56 is related to an active outward drug transport mechanism. Further gene cloning studies are required to verify this hypothesis.

Acknowledgments

We thank E. W. H. M. Eijndems, F. Baas, and P. Borst for providing us with SW-1573-derived fusant and transfectant cell lines and for stimulating discussions; M. A. Izquierdo for reviewing the manuscript; and N. N. Zoissasse for suggestions regarding the glycosylation studies. We thank Centocor (Tongeren, Belgium) for the generous supply of the C219 antibody.

References

