Contents

Chapter 1 Introduction

1.1 General introduction and outline

1.2 Epilepsy in patients with a brain tumor: focal epilepsy requires focused treatment

Chapter 2 What makes lesions epileptogenic?

2.1 Expression patterns of synaptic vesicle protein 2A in focal cortical dysplasia and TSC-cortical tubers

2.2 Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy

Chapter 3 What makes brain tumors epileptogenic?

3.1 Expression of synaptic vesicle protein 2A in epilepsy-associated brain tumors and in the peritumoral cortex

3.2 Overexpression of ADK in human astrocytic tumors and peritumoral tissue is related to tumor-associated epilepsy

Chapter 4 How do molecular changes due to brain tumors lead to alterations in the whole brain?

4.1 Functional connectivity is a sensitive predictor of epilepsy diagnosis after the first seizure

4.2 Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients

4.3 Local network topology is related to tumor protein expression in glioma patients

Chapter 5 Treatment of epilepsy in brain tumor patients

5.1 Prospective evaluation of cognitive functioning in glioma patients with epilepsy on levetiracetam monotherapy

5.2 Levetiracetam improves verbal and working memory in high-grade glioma patients

5.3 Synaptic vesicle protein 2A predicts response to levetiracetam in glioma patients

Chapter 6 Summary and General discussion

Chapter 7 Nederlandse samenvatting

Reference List
Dankwoord
List of publications
Curriculum vitae