Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes
Petra Juffer, Richard T. Jaspers, Paul Lips, Astrid D. Bakker and Jenneke Klein-Nulend
doi:10.1152/ajpendo.00320.2011

You might find this additional info useful...

This article cites 67 articles, 23 of which can be accessed free at:
http://ajpendo.physiology.org/content/302/4/E389.full.html#ref-list-1

Updated information and services including high resolution figures, can be found at:
http://ajpendo.physiology.org/content/302/4/E389.full.html

Additional material and information about AJP - Endocrinology and Metabolism can be found at:
http://www.the-aps.org/publications/ajpendo

This information is current as of February 6, 2012.
Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes

Petra Juffer,1 Richard T. Jaspers,2 Paul Lips,3 Astrid D. Bakker,1 and Jenneke Klein-Nulend1

1Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit (VU) University Amsterdam, Research Institute MOVE; 2Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam; and 3Department of Endocrinology, VU University Medical Center, Research Institute MOVE, Amsterdam, The Netherlands

Submitted 29 June 2011; accepted in final form 16 November 2011

Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am J Physiol Endocrinol Metab 302: E389–E395, 2012. First published November 22, 2011; doi:10.1152/ajpendo.00320.2011.—Lack of physical activity results in muscle atrophy and bone loss, which can be counteracted by mechanical loading. Similar molecular signaling pathways are involved in the adaptation of muscle and bone mass to mechanical loading. Whether anabolic and metabolic factors regulating muscle mass, i.e., insulin-like growth factor-I isoforms (IGF-I Ea), mechano growth factor (MGF), myostatin, vascular endothelial growth factor (VEGF), or hepatocyte growth factor (HGF), are also produced by osteocytes in bone in response to mechanical loading is largely unknown. Therefore, we investigated whether mechanical loading by pulsating fluid flow (PFF) modulates the mRNA and/or protein levels of muscle anabolic and metabolic factors in MLO-Y4 osteocytes. Unloaded MLO-Y4 osteocytes expressed mRNA of VEGF, HGF, IGF-I Ea, and MGF, but not myostatin. PFF increased mRNA levels of IGF-I Ea (2.1-fold) and MGF (2.0-fold) at a peak shear stress rate of 44 Pa/s, but not at 22 Pa/s. PFF at 22 Pa/s increased VEGF mRNA levels (1.8- to 2.5-fold) and VEGF protein release (2.0- to 2.9-fold). Inhibition of nitric oxide production decreased (2.0-fold) PFF-induced VEGF protein release. PFF at 22 Pa/s decreased HGF mRNA levels (1.5-fold) but increased HGF protein release (2.3-fold). PFF-induced HGF protein release was nitric oxide dependent. Our data show that mechanically loaded MLO-Y4 osteocytes differentially express anabolic and metabolic factors involved in the adaptive response of muscle to mechanical loading (i.e., IGF-I Ea, MGF, VEGF, and HGF). Similarly to muscle fibers, mechanical loading enhanced expression levels of these growth factors in MLO-Y4 osteocytes. Although in MLO-Y4 osteocytes expression levels of IGF-I Ea and MGF of myostatin were very low or absent, it is known that the activity of osteoblasts and osteoclasts is strongly affected by them. The abundant expression levels of these factors in muscle cells, in combination with low expression in MLO-Y4 osteocytes, provide a possibility that growth factors expressed in muscle could affect signaling in bone cells.

Muscle size and oxidative capacity are inversely related. This implicates that muscle size is regulated such that supply and demand of nutrients and oxygen are matching to meet functional demand and prevent hypoxia. Since muscle fibers are multinucleated, the rate of protein synthesis may vary with the number of myonuclei (46). Changes in muscle contractile activity stimulate expression of factors that modulate muscle mass by activating satellite cell proliferation by affecting the rate of mRNA transcription, mRNA translation, or protein degradation (6). Hence, a loss or gain of skeletal muscle mass and/or oxidative capacity follows.

Numerous growth factors are capable of modulating the adaptation of muscle fiber size and oxidative capacity. The prime anabolic and metabolic growth factors involved in muscle hypertrophy include insulin-like growth factor-I (IGF-I) isoforms IGF-I Ea and mechano growth factor (MGF) (22), hepatocyte growth factor (HGF) (51), vascular endothelial growth factor (VEGF) (16), and myostatin (41). Expression of these growth factors is determined largely by mechanical loading of muscle fibers (22).

In contrast to muscle, in which the systems for synthesis and degradation of the contractile apparatus all reside within the muscle cell, bone remodeling requires three different cell types, i.e., osteoblasts, osteoclasts, and osteocytes (57). During bone remodeling, bone is constantly renewed by the activity of osteoclasts, which remove excess bone in places that are relatively unloaded, and osteoblasts, which form bone in places that are exposed to loading (37, 57). The initiation of mechanically induced bone formation and bone resorption is orchestrated by the osteocytes and the mechanosensing cells of bone (11, 57), although cells from other tissues associated with the musculoskeletal system can affect bone formation, e.g., bone morphogenic protein 4 production by tenocytes in tendons (7).

Similarly to muscle fibers, which produce growth factors to adapt muscle mass to mechanical loading, osteocytes produce growth factors to orchestrate the adaptation of bone mass and structure to mechanical loading (55, 57, 59). Since muscle fibers and osteocytes share the same mesenchymal precursor...
cell, and since mechanical loading affects both muscle and bone by increasing tissue mass and strength, it is plausible that both muscle fibers and osteocytes share similar biological pathways in the regulation of muscle fiber size and bone mass and structure in response to mechanical loading (25, 33).

Although IGF-I Ea, MGF, VEGF, HGF, and myostatin have been reported to affect the effector cells involved in bone remodeling (2, 9, 14, 20, 24, 26, 49, 56, 60), it is largely unknown whether osteocytes produce these factors in response to mechanical loading. Therefore, we aimed to determine whether MLO-Y4 osteocytes express basal levels of the most widely studied muscle anabolic and metabolic factors and to assess whether mechanical loading by pulsating fluid flow (PFF) affects the mRNA levels and/or protein levels of these growth factors in MLO-Y4 osteocytes.

MATERIALS AND METHODS

Osteocyte culture. MLO-Y4 osteocytes were cultured in α-minimal essential medium (α-MEM; Gibco, Paisly, UK) supplemented with 10 μg/ml penicillin (Sigma-Aldrich, St. Louis, MO), 10 μg/ml streptomycin (Sigma-Aldrich), 50 μg/ml fungizone (Gibco), 5% fetal bovine serum (FBS; Gibco), and 5% calf serum (CS; Gibco) at 37°C in a humidified atmosphere of 5% CO₂ in air. The medium was exchanged every 3–4 days. The MLO-Y4 osteocytes were kindly provided by Dr. L. F. Bonewald (University of Missouri-Kansas City, Kansas City, MO) (34). Upon confluence, cells were harvested using 0.25% trypsin and 0.1% EDTA in phosphate-buffered saline seeded at 2 × 10⁵ cells/75 cm² culture flask (Greiner Bio-One, Kremsmuenster, Austria) and cultured until the cell layer reached confluence again. MLO-Y4 osteocytes were used for PFF experiments, as described below.

PFF. One day before PFF treatment, MLO-Y4 osteocytes were harvested from the culture flasks and seeded onto polylysine-coated (50 μg/ml poly-L-lysine hydrobromide; Sigma) glass slides (size 2.5 × 6.5 cm) at 3 × 10⁵ cells/glass slide and cultured overnight in petri dishes with 13 ml of culture medium containing 5% FBS and 5% CS. Then, the culture medium was replaced by α-MEM medium containing 1% FBS and 1% CS. MLO-Y4 osteocytes were incubated at 37°C in a humidified atmosphere of 5% CO₂ in air as well as for 1 h PFF treatment or static control culture.

PFF was applied as described earlier (36). Briefly, PFF was generated by pumping 13 ml of culture medium through a parallel-plate flow chamber containing the MLO-Y4 osteocytes. The cells were subjected to a 5-Hz pulse frequency with a mean shear stress of 0.7 Pa, a pulse amplitude of 0.3 Pa, and a peak shear stress rate of 22 Pa/s (5). Higher shear stresses were generated using a 5-Hz pulse frequency with a mean shear stress of 1.4 Pa, a pulse amplitude of 0.7 Pa, and a peak shear stress rate of 44 Pa/s. These loading regimes were performed with a mean shear stress of 1.4 Pa, a pulse amplitude of 0.7 Pa, and a peak shear stress rate of 44 Pa/s. These loading regimes were performed using a nanodrop spectrophotometer (Nanodrop Technologies; Thermo-Fischer Scientific, Wilmington, DE). mRNA was reverse-transcribed to complementary DNA (cDNA) using a High Capacity RNA-to-cDNA Kit (Applied Biosystems). Real-time PCR for determination of mouse IGF-I Ea, MGF, VEGF, HGF, and myostatin mRNA was performed on the StepOne Real-Time PCR system (Applied Biosystems). Primers were designed using the Universal Probe Library from Roche Diagnostics. Primers were as follows: IGF-I Ea, 5'-GGTTGCTTCCGGAGCTGTG and 5'-CAAATGTCATCCTCTCTT-GAGTC; MGF, 5'-GGAGAAAGGGAAAGGAATCTTGG and 5'-CCTGTCTCGITGGAAGGCCT; VEGF, 5'-CTGTAAACGATGAGGCTGTCAGGAGTG and 5'-GTTGAGGGGTAACGGAC; HGF, 5'-GATTATTTGCCCCATTTCCTCGTGTTG and 5'-TTGGCAGCATATTACAGATGG; myostatin, 5'-TGTGTAAACCCTCCAGGACCA and 5'-GTGAGGGGGGAACGGCGAC; and 18S, 5'-GTAAACCCTGTTGAACCCATCT and 5'-CCATCAAATCGTGTAGTAGC. Data were analyzed using StepOne version 2.0 software (Applied Biosystems) and normalized for 18S ribosomal RNA levels.

Protein release. VEGF, HGF, and IGF-I protein levels in conditioned medium were measured by an enzyme-linked immunosorbent assay (RayBio Mouse ELISA kit; RayBiotech). The detection limits were as follows: VEGF, 2 pg/ml; HGF, 100 pg/ml; and IGF-I, 4 pg/ml. Absorbance was measured at 450 nm with a microplate reader (Bio-Rad Laboratories).

Statistical analysis. Data of five separate independent experiments were obtained. Statistical analyses were performed using SPSS 16.0 (SPSS, Chicago, IL). Groups were compared using ANOVAs with Bonferroni-adjusted t-tests as post hoc tests. Differences were considered significant if P < 0.05. All data are expressed as means ± SE.

RESULTS AND DISCUSSION

Expression of muscle anabolic and metabolic factors by MLO-Y4 osteocytes. Force transmission from muscle via its tendons to bone is presumed to be one of the primary mechanisms by which muscle mass affects bone remodeling (50). However, muscle may also modulate the rate of bone turnover via expression and secretion of growth factors that stimulate osteogenesis via paracrine or endocrine signaling (2, 25) Here, we show that anabolic and metabolic regulatory growth factors in muscle fiber size, i.e., IGF-I Ea, MGF, VEGF, and HGF, are also basally expressed in MLO-Y4 osteocytes (Fig. 1, A and B). Expression levels of VEGF and HGF mRNA relative to 18S in MLO-Y4 osteocytes are in the same order of magnitude as those reported for muscle cells (28, 39). In contrast, expression levels of IGF-I Ea and MGF mRNA are substantially lower (i.e., 10,000-fold) compared with those in muscle cells (31). In addition, basal mRNA levels of the negative regulator of muscle growth myostatin were not detectable in MLO-Y4 osteocytes (Fig. 1A), although myostatin is abundantly expressed in muscle cells (27). This suggests that the reported inhibitory effects of myostatin on proliferation and differentiation of osteoprogenitor cells (18) likely originate from myostatin expression in muscle. This supports the notion that myostatin is a muscle-specific transforming growth factor-β and hence, supports the presumed existence of paracrine and/or endocrine communication between muscle and bone (2, 25, 33).
Mechanosensitivity and bone remodeling: role of muscle anabolic and metabolic factors. Osteocytes play a central role in bone remodeling by sensing the external mechanical stimuli and transducing these into signaling molecules like NO and prostaglandins (35, 36), which modulate the activity of osteoblasts and/or osteoclasts. It has already been reported that anabolic and metabolic growth factors, which play a role in the regulation of muscle fiber size, i.e., IGF-I Ea, MGF, myostatin, VEGF, and HGF, also affect the activity of osteoblasts and/or osteoclasts (2, 9, 14, 15, 20, 24, 26, 49, 56, 60). Since osteocytes coordinate the activity of osteoblasts and osteoclasts in the process of mechanical adaptation of bone (57), and muscle anabolic and metabolic factors are also expressed in osteocytes, these factors could also play a role in mechanically induced bone remodeling.

In this study, MLO-Y4 osteocytes were subjected to PFF. Application of PFF for 1 h to MLO-Y4 osteocytes did not result in visible changes in cell shape or alignment of the cells in a particular orientation (data not shown). No cells were removed by the fluid flow treatment, as assessed by visually inspecting the cultures before and after PFF treatment.

IGF-I Ea and MGF mRNA levels. In the current study, mechanical loading of MLO-Y4 osteocytes by PFF with a shear stress rate of 22 Pa/s did not increase mRNA levels of IGF-I Ea or MGF (Fig. 2, A and C). Moreover, IGF-I protein production could not be quantified before or after PFF treatment (data not shown). Loading of rat tibia in situ increases IGF-I mRNA levels in young osteocytes situated near the periosteal surface, where IGF-I mRNA is also highly expressed by the osteoblasts (47). Additionally, IGF-I levels are upregulated in mechanically loaded tibia of ovariectomized mice (67), when RNA is isolated from whole tibiae. The discrepancy between the effects of mechanical loading on IGF-I gene levels in tibia in vivo and our results could be explained by the cell model we used, the type and/or magnitude of load, and/or the differences between in vitro and in vivo loading. Osteoblasts have been shown to express MGF in response to stretch (56). However, to our knowledge, MGF mRNA levels in mechanically loaded osteocytes have not been studied before. Since strain and fluid shear stress may activate different mechanosensitive signaling pathways in the cell (42), it is conceivable that not fluid shear stress but strain affects IGF-I Ea and/or MGF mRNA levels by osteocytes. Alternatively, like in muscle (30), local strain amplifications in the cytoskeleton may also occur in bone (66). Therefore, osteocytes in a 3D matrix in
vivo may be subjected to higher-intensity mechanical stimuli than osteocytes in a 2D environment. To test whether a higher magnitude of shear stress affects mRNA levels of IGF-I Ea and/or MGF in osteocytes, we subjected MLO-Y4 osteocytes to PFF with a twofold higher peak shear stress rate (i.e., 44 Pa/s). Indeed, higher loads did increase mRNA levels of both IGF-I Ea (2.1-fold) and MGF (2.0-fold) in MLO-Y4 osteocytes (Fig. 2, B and D). This suggests that, in vivo, increased mRNA levels of IGF-I Ea and MGF in osteocytes are to be expected when higher shear stresses are experienced by the osteocytes.

In muscle, IGF-I Ea is a potent growth factor that stimulates both the rate of mRNA transcription of contractile proteins (53) and their rate of translation via phosphatidylinositol-3 kinase/Akt/mTOR pathway (32). The splice variant of IGF-I, MGF, seems to be involved in satellite cell activation and migration of myonuclear and satellite cells, resulting in an increased myonuclear density in the muscle fiber (44, 65). In muscle, mRNA levels of both isoforms, IGF-I Ea and MGF, are upregulated by mechanical loading (27). The anabolic effects of IGF-I Ea and MGF on bone are less well characterized (19). In bone, MGF E-peptide (a 23-amino acid peptide encoded the MGF E-domain) stimulates osteoblast proliferation, whereas IGF-I Ea stimulates both osteoblast proliferation and differentiation (15, 40). Additionally, recombinant IGF-I has been shown to stimulate osteoclast differentiation and resorption activity (25, 63), indicating that IGF-I Ea may increase not only bone formation but also bone resorption.

Bone formation and bone resorption: role of HGF. We found that mechanical loading by PFF decreased HGF mRNA levels in MLO-Y4 osteocytes (Fig. 3A). This decrease did not result in a decrease in HGF protein release, since PFF even increased HGF protein release 2.3-fold (Fig. 3B). These results suggest that the PFF-increased HGF protein levels in the medium were due to enhancement of translation of HGF mRNA or protein release from the glycocalyx. To test whether the increase of HGF protein levels in the medium was caused by an increased rate of translation, we inhibited phosphorylation of mTOR by adding rapamycin to the culture medium. Rapamycin is a well-known inhibitor of mTOR, thereby inhibiting mTOR-mediated protein translation (8). In the presence of rapamycin, the PFF-induced HGF protein production/release was not abolished (Fig. 3C), which indicates that PFF did not increase HGF protein release via mTOR-stimulated translational control. An alternative explanation for the discrepancy between changes in HGF mRNA levels and HGF protein levels in MLO-Y4 osteocytes after PFF-treatment may be that, similarly to muscle fibers, HGF stored in the glycocalyx is released from it by the mechanical loading-induced NO production (4). Such release seems possible for osteocytes, since both muscle fibers and osteocytes produce NO in response to mechanical...
loading (13, 63). Therefore, we tested whether the PFF-induced HGF protein release by MLO-Y4 osteocytes was mediated by NO. For this purpose, PFF-induced NO production was inhibited by adding the NO synthase inhibitor 1400W (Fig. 3D). Inhibition of NO synthesis decreased the PFF-induced HGF protein release 2.0-fold (Fig. 3E), suggesting that NO modulates HGF protein secretion by osteocytes in response to mechanical loading.

HGF plays a role in bone formation, because it stimulates osteoblast differentiation (29) and inhibits mineralization (54). HGF is also involved in bone resorption, because it stimulates osteoclast formation (1, 23). Osteoclastic bone resorption is generally followed by osteoblast differentiation and new bone deposition, i.e., the activity of osteoclasts and osteoblasts is tightly coupled (3). Since it is likely that osteocytes orchestrate the activity of osteoclasts and osteoblasts in the process of mechanical adaptation of bone (10, 55, 57, 59), bone remodeling might be mediated by HGF produced by mechanically loaded osteocytes. The impact of HGF on bone remodeling and the precise role of HGF in this warrant further investigation.

Angiogenesis in bone: role of VEGF. In our study, we show that VEGF mRNA levels and VEGF protein release in MLO-Y4 osteocytes were increased in response to PFF (Fig. 4, A and B). VEGF expression is also upregulated in mechanically loaded tibia of ovariectomized mice (67). Since VEGF mRNA levels in muscle and endothelial cells are increased by NO (21), we tested whether the PFF-induced VEGF protein release by MLO-Y4 osteocytes was also mediated by NO. Inhibition of NO synthesis by 1400W decreased the PFF-induced VEGF protein release twofold (Fig. 4C), suggesting that VEGF expression by osteocytes in response to mechanical loading is partially modulated by NO like in muscle.

Vascularization in muscle is very important for the supply of nutrients and oxygen to muscle fibers (17). A limited supply implicates a low fatigue resistance, which becomes apparent via a reduction in the ability to generate force (17). Similarly, as in muscle, a high demand of nutrients and oxygen is to be expected in bone, particularly since in vitro hypoxia activates osteoblasts to form bone (61). During bone remodeling, resorption and formation of the bone matrix are generally accompanied by angiogenesis in the cutting cone of the osteon (3). It has been reported recently that VEGF, a potent regulator of angiogenesis, is produced by osteocytes (12). Since bone remodeling is induced mechanically, and since we showed that mechanical loading stimulates VEGF mRNA levels and protein release in MLO-Y4 osteocytes, this might implicate that the mechanically induced VEGF production contributes to the vascularization within the cutting cone of the osteon.

VEGF not only stimulates blood vessel formation but also increases bone formation by stimulating osteoblastogenesis (20). Therefore, the PFF-induced VEGF production in osteocytes is likely not only contributing to the vascularization within the bone matrix but is also involved in mechanically induced bone remodeling.

Summary. The present data show that mechanically loaded MLO-Y4 osteocytes differentially express mRNA and protein of anabolic and metabolic factors involved in the adaptive response of muscle to mechanical loading, i.e., IGF-I Ea, MGF, VEGF, and HGF. Comparison of these results with those in muscle suggest similarities as well as differences in signaling pathways in bone and muscle in response to mechanical loading. Mechanical loading affects VEGF and HGF mRNA and protein levels in osteocytes, which is also known for muscle fibers. This indicates novel roles for VEGF and HGF in mechanical loading-mediated bone remodeling. We also show that mechanical loading by PFF increases IGF-I Ea and MGF mRNA levels in MLO-Y4 osteocytes at a high physiological shear stress rate, but these mRNA levels are still several orders of magnitude lower than IGF-I Ea and MGF mRNA levels in muscle (31). MLO-Y4 osteocytes, either subjected to PFF or not, do not express myostatin mRNA. In muscle, IGF-I Ea, MGF, and myostatin are highly expressed (31, 38), and the effect of mechanical loading on the expression of these growth factors is substantial (26). Although in MLO-Y4 osteocytes expression levels of IGF-I Ea and MGF were shown to be low and that of myostatin was not detectable, the activity of osteoblasts and osteoclasts is well known to be strongly affected by these growth factors (14, 15, 23–25, 43, 52, 60, 64). This, in combination with the abundant expression levels of these factors in muscle cells, suggests that osteoblasts and osteoclasts may, in addition to the growth factors expressed in these cells, also respond to muscle-derived IGF-I and myostatet.
MUSCLE ANABOLIC AND METABOLIC FACTORS IN OSTEOCYTES

Our results do not provide direct evidence for any paracrine and/or endocrine signaling between muscle and bone, but such communication may not be excluded. Whether muscle-derived growth factors affect bone cells and vice versa requires further investigation. Additional in vivo research on the biological cross-talk between bone cells and muscle cells may reveal new targets for prevention and/or treatment of sarcopenia and osteoporosis.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

REFERENCES

26. Hamrick MW, Shi X, Zhang W, Pennington C, Thakore H, Haque M, Kang B, Isales CM, Fulzele S, Wenger KH. Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unload-

