Contents

1 | Phospholes and Phosphine-Acetylenes: Overview of this Thesis | 7
1.1. Introduction | 8
1.2. Overview of this thesis | 8

2 | Phosphole-Containing π-Systems | 9
2.1. Organic electronics | 10
2.2. History of phospholes | 12
2.2.1. Synthesis | 13
2.2.2. Aromaticity | 15
2.2.3. Reactivity at phosphorus | 18
2.3. Phospholes in π-conjugated molecular frameworks | 21
2.3.1. 2,5-Bisarylporpholes | 21
2.3.2. Phosphole-containing ‘ladder-type’ ring systems | 31
2.4. Concluding remarks | 36
2.5. References | 36

3 | Phosphine Acetylenic Macrocycles and Cages: Synthesis and Reactivity | 45
3.1. Introduction | 46
3.2. Organic phosphine-acetylenic macrocycles and cages | 48
3.2.1 Pericycline-based macrocycles | 48
3.2.2. Exploded pericycline-based macrocycles | 51
3.2.3. Miscellaneous macrocycles | 53
3.2.4. Phosphine-acetylenic cages | 53
3.2.5. Shift from organic to organometallic assemblage | 54
3.3. Organometallic phosphine-acetylenic macrocycles and cages | 54
3.3.1. Dppa- and dppda-based Pt and Pd containing macrocycles | 55
3.3.2. Dppa- and dppda-based macrocycles with other transition metals | 60
3.3.3. Miscellaneous macrocycles | 67
3.3.4. Dppa- and dppda-based cages | 70
3.4. Concluding remarks | 74
3.5. References | 75

4 | Novel Bisazidophosphole Building Block for Extended π-Conjugated Systems | 79
4.1. Introduction | 80
4.2. Results and discussion | 81
4.2.1. Synthesis of bisazidophosphole building block | 81
4.2.2. Click chemistry | 83
4.2.3. UV-Vis absorption and fluorescence spectroscopy | 84
4.2.4. Cyclic voltammetry | 89
4.2.5. UV-Vis spectroelectrochemistry | 90
4.2.6. DFT calculations | 91
4.3. Conclusion | 93
4.4. Experimental section | 94
4.4.1. Synthesis | 94