The relationship between higher order models and everyday conceptions of personality

G. R. SEMIN† and J. CHASSEIN

University of Sussex, School of Social Sciences,
Arts E, Falmer, Brighton BN1 9QN, England and
University of Mannheim, L13, 15–17,
6800 Mannheim 1, West Germany

Abstract

Two studies are reported. The first one is concerned with an examination of the degree to which higher order models of personality differ from everyday social representations of personality. The second study consists in an analysis of intersubjective variations in the organization of everyday personality theories through an examination of the semantic field in which trait terms are represented. It is argued that hypothetico-deductive models of personality rely primarily on ordinary language descriptions of persons and do not constitute higher order models. Further, it is suggested that the development of such models relies primarily on a linguistic context, rather than extralinguistic considerations to social interaction in which person terms feature centrally. The two studies provide empirical support for both contentions. Finally, a cross-cultural comparison of the semantic representation of trait terms is provided.

INTRODUCTION

The studies reported in this paper focus on an examination of the interface between two conceptions of persons. The first is contained in ‘... a set of concepts, statements and explanations originating in everyday life in the course of inter-individual communications’ (Moscovici, 1981, p. 181), i.e. social representations of persons, and the second consists in so-called ‘scientific’ representations of persons developed on the basis of hypothetico-deductive methods in personality research (e.g. Cattel and Scheier, 1961; Eysenck, 1970a; Guildford, 1959; Vernon, 1950, inter alia). Our approach is predicated primarily upon an analysis of the organization of ordinary language (cf. Coulter, 1979; Israel,

*The reported studies were conducted through the Sonderforschungsbereich 24, Sozialwissenschaftliche Entscheidungsforschung, University of Mannheim, financed by the Deutsche Forschungsgemeinschaft with support from the Government of Baden Württemberg.

Requests for reprints to: G. R. Semin, University of Sussex, Arts E, School of Social Sciences, Falmer, Brighton BN1 9QN, England.

0046–2772/85/010001–15$01.50 © 1985 by John Wiley & Sons, Ltd. Received 4 November 1983 Revised 27 February 1984
1979), providing two empirical contributions (one of a comparative nature) to elucidate the relationship between ‘first-order’ (Schutz, 1953) descriptive and explanatory constructions available in common sense reasoning about persons, and those constructions which are available in ‘scientific’ models of personality.

Research in person perception (e.g. Kuusinen, 1969a, b; Mulaik, 1964; Passini and Norman, 1966, *inter alia*) has some bearing on this problem, as does the more recent research which has arisen out of this earlier work on the ‘idealism–realism’ issue (cf. Schneider et al., 1979) and the debate concerning the ‘systematic distortion hypothesis’ (e.g. Shweder and D’Andrade, 1980). Other studies have addressed this problem more directly in an attempt to examine the degree of conceptual overlap between ‘scientific’ and common sense conceptions of personality (cf. Rosch et al., 1984; Semin et al., 1981a, b; 1984).

Scientific models of personality as any scientific model are founded, in the first instance, on common sense conceptions (cf. Schutz, 1953; Whitehead, 1917). However, the distinctive feature of the constructs of ‘scientific models’ is that they are supposed to supersede everyday constructs. In personality theory, for example, these two aspects are acknowledged (cf. Cattell, 1946; Eysenck, 1970a, c). The idea underlying such approaches to personality is that an adequate taxonomy of phenotypic attributes of personality can be developed through examining everyday language use. The aim is to devise higher order concepts of personality (e.g. source traits as in the case of Cattell and Scheier, 1961, or traits and types as in the case of Eysenck, 1970a) from lower order descriptions of behaviour (e.g. surface traits as in the case of Cattell and Scheier, 1961, or habitual and specific responses in the case of Eysenck, 1970a).

Recent studies, however, throw a doubtful light on both the empirical validity and the rationale underlying this assertion, namely that hypothetico-deductive models of personality supersede common sense conceptions of personality. For example, Semin et al., (1981a) showed that the common sense conception of extraversion–introversion has a high degree of conceptual overlap with its ‘scientific’ counterpart as developed by Eysenck (1970a, b; Eysenck and Eysenck, 1976). Furthermore, a number of investigations (e.g. D’Andrade, 1965, 1974; Mulaik, 1964; Shweder, 1975, 1977; Shweder and D’Andrade, 1980, *inter alia*) have shown that responses to psychometrically sophisticated scales are mediated by the semantic similarity between the items of a scale and that perceived semantic similarity between items replicates the structural properties of personality inventories implying the existence of normative everyday conventions of personality. Finally, Semin et al., (1981b) demonstrated that subjects naive to psychology were able to identify items belonging to diagnostic categories in a multiphasic personality inventory as well as a complex mood inventory with considerable accuracy and ease. In these studies it was found that subjects could also reproduce the structure pertaining to the interscale relationships for the categories with an accuracy which accounted for more than 65 per cent of the variance

1In this context it should be noted that what has generally been regarded as *implicit* personality theory (cf. Bruner and Tagiuri, 1954; Cronbach, 1955; Schneider, 1973) may be somewhat misleading. One of the distinctive features of the studies reported by Semin et al. is that subjects were not supplied with any definitions of the dimensions or categories concerned but were requested to generate their conceptions of particular categories or dimensions of personality. The results of these studies suggest that subjects have *explicit* access to specific conceptions of personality which are not only highly intersubjective, but also concur broadly with the ‘scientific’ ones.
Additionally, research within a psychometric tradition concerned with the ‘paradox’ of the fakeability of ‘good scales’ (cf. Brown and Gomez, 1966; Gomez and Brown, 1967; Power, 1968, inter alia) displays that such scales are extremely susceptible to response set biases induced by instructions to simulate a role or a type (cf. Semin and Rogers, 1973). These findings suggest that items in such inventories are interpreted consensually. When a particular stereotypic role is supplied, such as a ‘salesman’ or a ‘nurse’, then the interpretation of scale items is systematically biased on the basis of consensually shared stereotypes, whereby the structural relationships between the items in the inventory are retained. Taken together, the various strands of research suggest that there is a high degree of conceptual overlap between ‘scientific’ and common sense theories of personality.

Two theoretical reasons can be advanced for this conceptual overlap. The first one is based on a critique of the assumption that employing ‘sophisticated’ psychometric methods ensures objectivity, brings order into data, and serves verificatory purposes. The claim made by proponents of hypothetico-deductive models is exemplified in Eysenck’s suggestion that: (The) demand for one typology instead of a whole collection of different typologies is, in essence, a demand for a scientific methodology which will enable us to test claims advanced for any specific system; the essential incompleteness of the typologists’ achievements lay in their failure to provide a technique of verification by means of which their claims can be subjected to genuine scientific validation. It is only through the method of factor analysis that such verification can be done (Eysenck, 1970c, p. 35). The assertion is that through using psychometric procedures a model of personality can be developed which superseded ‘unsystematic’ commonsense or ordinary language descriptions, in terms of its abstraction, generality and validity. These assumptions are clearly misleading (cf. Harré, 1974; Harré and Secord, 1972) since order already exists in the origins of the data points, namely items which are statements in ordinary language. This order is provided through the normative conventions that are part and parcel of everyday language. Method, in this connection, provides only one way of representing this order. This pre-analytic order is contained in what may be broadly understood as common sense, i.e. socially shared knowledge, to which Smedslund refers to as . . . the system of implications shared by all competent members of a culture (1982, p. 23). The implications between different person descriptions as they are to be found in personality inventories largely derive from normative language conventions. This is mainly due to two decontextualizing forces. One of these is evoked through response elicitation procedures. These require a general de-situationalization from specific pragmatic contexts within which individual statements or items may be answered by subjects. The second decontextualization is obtained through analytic techniques (e.g. factor analysis) which further identify and extract common structures of data points. Consequently, potential sources of variations which have bearings upon pragmatic contexts, i.e. meanings in use, are eliminated practically and technically. The result is a descriptive idealization which relies primarily on the linguistic conventions of the members of a language community rather than language in use. Thus, factorial or circumplex models of personality consist only of propositional networks of items, already contained in culturally given conceptual schemata about persons. Paradoxically, this means that psychometric models of personality are social representations (e.g. Moscovici, 1981) of personality, rather than constructs which
supersede common sense and can therefore be regarded as falling in the domain of 'social cognition' as Moscovici (1981) understands it.

Aside from these reasons it is possible to trace another, if more speculative, rationale for a conceptual overlap between 'scientific' and common sense conceptions of personality from an historical perspective. This argument is derived from the above considerations. Typologies of personality and temperament have been a common feature of Western culture since its early origins (cf. Allport, 1963; Eysenck, 1970c). Already with Galen (c. 150 A. D.) we find a doctrine of temperaments which in its final form served as a basic system throughout the renaissance and even later (cf. Burnham, 1968). Both Kant's (1980) and Wundt's (1911) work contain related assumptions about the organization of the temperaments and personality. Indeed, Eysenck (1970a) notes with some caution that 'we may claim a certain continuity from the early Greek theories of temperament to the most modern' (p. 19). The continuity referred to (cf. Hogan, 1983) is the conceptual organization of dispositional terms and the particular semantic structural relationships existing between them. The question that arises in the context of the relative historical consistency of these personality conceptions is whether these theories were extractions from already existing social representations about human personality contained in language conventions or, alternatively, were they constructions which superseded common sense? It may be argued that in their early origins these constituted higher order models, which have then become assimilated, or in Moscovici's words, they became anchored, i.e., '(brought) back to everyday categories and images . . .' (Moscovici, 1981, p. 192). This point is difficult to establish unless one embarks on an analysis of historical

Figure 1. Relationship of extraversion/introversion and neuroticism/stability to earlier personality schemes (From Eysenck and Eysenck, 1976, p. 6)
texts. However, it is possible to examine the degree to which such taxonomies actually constitute social representations sedimented in everyday knowledge. Eysenck (1970c; Eysenck, and Eysenck, 1976, p. 6) provides a model containing the general features of most contemporary as well as earlier personality conceptions, represented in Figure 1 above.

The aim of the first study reported here was to examine the extent to which this model is contained in everyday knowledge. The particular purpose of the first study was thus to examine the degree of conceptual overlap between the structural organization of traits as suggested by Eysenck with their organization in common sense. This would thus constitute an examination of the degree of overlap between a general view of personality as suggested by Eysenck’s circumplex and common sense.

STUDY 1

Method

Subjects

Thirty-three undergraduate students at the University of Mannheim participated in this study on a paid voluntary basis. They were all non-psychology students.

Procedure

Subjects were given 31 trait terms (cf. Figure 1, the stimulus terms were presented in their translation by Eggert, 1974, p. 10) which present a description of the four temperaments falling into the quadrants established by the types of choleric, sanguine, melancholic, and phlegmatic, which were assumed to represent ‘... the relationship between the(se) two factors (extraversion–introversion and stability–instability) and the ancient Galen–Kant–Wundt scheme of the four temperaments’ (Eysenck and Eysenck, 1976, p. 6). The labels of the two dimensions were omitted from this list of traits. Each attribute was printed separately on a 10.5 × 14 cm card. The cards were shuffled separately for each subject, and subjects were asked to sort the cards according to similarity in meaning into groups. The sorting task method was adopted from Miller (1967, 1969) and required that the subject sort the cards into groups on the surface of a large table on the basis of their similarity in meaning. Subjects were allowed as many piles as they wanted, and there were no restrictions on the number of items they wanted to put in any file. The reliability of such sorting tasks has been shown to be very high (cf. Mandler and Pearlstone, 1966; Miller, 1969).

Results

The groups formed by each subject were entered into an individual incidence matrix, which was a lower half 31 × 31 matrix. A particular cell, i,j represents the

2Although the original Eysenck circumplex (cf. Figure 1) consists of 32 terms excluding the dimension labels, the German version had 31 (even-tempered is omitted in the German version). It is therefore that the first study had 31 terms and the second 35 instead of 32 and 36 respectively (cf. Eggert, 1974).
particular pair of attributes i and j. The cell receives an entry of 1 if that pair of attributes are put together and no entry is made if they are in separate groups. A pooled matrix over all subjects was obtained through adding the 33 unweighted incidence matrices. The resulting pooled matrix cell Nij represents the number of judges who put attributes i and j together in the same group. The pooled matrix for the 33 subjects was taken as the basis for the data analyses. These analyses were based on the assumption that each person partitions the set of attributes into subsets and that each attribute belongs to one and only one subset. Thus, the data matrix is treated as a similarity matrix and the relations between the items represent distances (cf. Miller, 1969). The first analysis was a multidimensional scaling of the similarity through MINISSA (cf. Lingoes and Roskam, 1973; Roskam, 1977) which provides an internal analysis of a two-way data in a lower half matrix format of similarity measures by an Euclidian distance model using non-monotonic transformations of the data. Basically, the algorithm finds coordinates of n-points, representing the traits in n-dimensional space such that the distances among these points are in approximately the same rank order as the similarities. The underlying dimensionality was determined through M-SPACE
(Spence and Graef, 1974) which is the two-dimensional solution presented in Figure 2 below.

The respective stress values for the six- to one-dimensional MINISSA solutions were: 0.02; 0.03; 0.04; 0.06; 0.08; 0.29. The M-SPACE solution indicated that the best fitting dimensionality is 2 at an error level of 14, which by the criteria of M-SPACE falls within the range of low error (cf. Spence, 1972). The resulting distance matrix between the 31 points were then analysed using MODE analysis (Wishard, 1969a, b, 1973) which is a derivative of single linkage clustering, and which searches for natural subgroupings of the data points by estimating disjoint surfaces in the sample distribution. Four clusters were obtained at an enclosure ratio coefficient of 0.97, which are entered with their respective cluster nuclei in Figure 1 above.

Although these analyses provide us with a descriptive account of the common sense organization of the 31 trait terms that closely resembles the organization suggested by Eysenck (cf. Figure 1) it does not provide a statistic which conveys an estimate of the degree of overlap. For this purpose the obtained two-dimensional configuration was compared with the theoretical configuration suggested by Eysenck. This was done by using the Procrustian Individual Differences Scaling algorithm (PINDIS, cf. Borg, 1977). This algorithm can be used to estimate the communality between an hypothetical and an empirical configuration and yields an index similar to the proportion of variance explained in the language of regression analysis. The communality (R^2, Xi) between the common sense and theoretical configurations without any transformation was 0.55 and was raised with transformations ($r (ViZ, Xi)$) to 0.65.

Discussion

The common sense organization of traits represented in Figure 2 displays a notable communality with the organization of these traits as suggested by Eysenck (1970c). This finding supports the contention that there is a conceptual overlap between higher order representations of personality and everyday social representations as these are displayed in the semantic space corresponding to the dispositional terms concerned. Obviously, it is impossible to clarify with this study whether this convergence is the result of anchoring (cf. Moscovici, 1981) of the higher order models over time, or the higher order models have always constituted models given in ordinary language conventions. What the present study shows however is that the systematic relationships for trait terms in both conceptions are highly interrelated.

This is not particularly surprizing if one considers the linguistic descriptions about persons constitute the basis of both everday knowledge and use, as well as of those inventories or ‘instruments’ designed to assess ‘properties’ of individuals. If such descriptions are not used randomly in everday life then they must display structure (cf. Garner, 1974), i.e. be predicated upon rules, for example of classification, correspondence, relatedness, etc., which follow a form of patterned

1It should be noted that the item ‘responsive’ in Figure 2 is the one item which is positioned extremely differently from the cluster of items it belongs to in the theoretical model. But, in our view, this was due to the German translation of this item (‘reaktiv’), provided by Eggert (1974) which is not an appropriate translation of the word responsive and means ‘reactive’.
indeterminacy (cf. Cheal, 1980). That is, there are limits to normative classifications, associations, correspondences, etc. of person terms (i.e. they are not random), but within these general limits they will be indeterminate. The organization of the trait terms that has been demonstrated in the first study is primarily influenced by a linguistic context, to be more precise, the linguistic context provided by the array of items. However, this turns out to be also the case for personality assessment procedures. Nomothetic procedures supply nomothetic and not idiographic knowledge, whereby the latter is treated as error variance. The types of models of personality which are based on hypothetico-deductive models thus appear to uncover cultural communalities and the models that they develop and derive are ‘ideal cultural types’ and contain little if any information about idiosyncratic or situated perspectives (cf. Bromley, 1977; Rosenberg, 1977 for exceptions). This particular implication is somewhat ironic, because such models of personality would appear to chart our social representations of persons, and thus would appear to fall into the domain of social psychology in general and social cognition in particular.

As has already been mentioned, the particular pattern of trait interrelationships obtained in this study is primarily influenced by a linguistic context. This is but one of the possible two contexts in which meanings can be specified, the other being the pragmatic one. ‘Meanings are dependent on their linguistic context when they are partially determined for their members by other linguistic items or properties that occur in the same situations, such as the same text. They are dependent on the practical context when they are determined for their members by other non-linguistic aspects of situations in which they occur. The practical or use context consists primarily of such things as the time and place in which they occur and the knowledge that is taken for granted about the persons involved’. (Douglas, 1971, p. 38).

STUDY 2

The question that remains open in the first study is how much intersubjective variation there is in the representations of this semantic domain even when a relatively self-contained linguistic context is employed. It must be added that the methods employed in the first study do not allow an examination of individual variations in the representation of the semantic domain of person terms. In order to examine idiosyncratic variations a second study was conducted enabling a comparison of individual subjects’ representations of the person terms employed in the first study. In order to minimize any pragmatic reference a method similar to the one used in the first study was employed. Here subjects were asked to give a rating of the similarity of each trait pair. We also intended to obtain a cross-cultural comparison between British and German students and to this end the second study was conducted in Britain. Thus, three objectives were set for the second study: (1) to determine the degree of intersubjective variation between subjects in their representations of a semantic domain corresponding to the one described by ‘higher order models of personality’; (2) to examine the correspondence between higher order models of personality and everyday social representations of the same domain within a different cultural context than the first study; and finally, (3) to
compare variations that exist in social representations of personality domain due to two different cultural contexts.

Method

Subjects
Twenty undergraduate students at the University of Sussex participated in this study on a paid voluntary basis.

Procedure
Each subject was presented with a pairwise combination of 35 traits (in this study the dimension labels in Figure 1 were also included) to be found in Figure 1. Their task was to estimate the similarity in meaning for each presented pair on a ten point scale of similarity ranging from ‘not at all similar’ to ‘completely identical’ in meaning. These pairs of traits were presented in a randomized order over a monitor. The order of traits was also randomized between subjects. The subjects gave their responses through pressing one of the ten keys in front of them. The whole study was run as an on-line experiment. Subjects had to give a total of \[\frac{(35 \times 35) - 35}{2} \] judgments. Since the task lasted between an hour and a half and three hours subjects were allowed to stop and return to their task at a later point in time. This was done in view of the fact that the task required considerable concentration. In order to check the intrasubject reliability of judgments the first 10 pairs were presented once more at the end of the series and the average reliability coefficient (product moment) over the 20 subjects was satisfactory \(r = 0.68 \).

Results
For each subject a complete lower half \(35 \times 35 \) similarity matrix was obtained. These similarity matrices were then transformed for each individual through analysing each with a multidimensional scaling algorithm (MINISSA) so that the data could be presented in \(n \)-dimensional space. The optimal dimensionality for each subject’s matrix was determined through M-SPACE. The stress values and the corresponding error degrees obtained through M-SPACE are presented in Table 1 below. These transformations were performed in order to be able to execute the comparative analyses reported below.

Examination of intersubjective variations
In order to examine the degree of intersubjective variation the coordinates of the above reported MINISSA solutions were entered into a PINDIS analysis, described in the earlier methods section. The communalities between the individual solutions and the group solution; the average individual communality; as well as the transformed communalities are presented in Table 2 below. As can be seen the degree of conceptual overlap between subjects is extremely high already in the untransformed analysis \(Z, X(I) = 0.83 \).
Table 1. M-SPACE solutions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0.318</td>
<td>0.134</td>
<td>0.098</td>
</tr>
<tr>
<td>2</td>
<td>0.371</td>
<td>0.189</td>
<td>0.120</td>
</tr>
<tr>
<td>3</td>
<td>0.303</td>
<td>0.170</td>
<td>0.120</td>
</tr>
<tr>
<td>4</td>
<td>0.304</td>
<td>0.155</td>
<td>0.099</td>
</tr>
<tr>
<td>5</td>
<td>0.351</td>
<td>0.145</td>
<td>0.070</td>
</tr>
<tr>
<td>6</td>
<td>0.361</td>
<td>0.137</td>
<td>0.093</td>
</tr>
<tr>
<td>7</td>
<td>0.311</td>
<td>0.166</td>
<td>0.111</td>
</tr>
<tr>
<td>8</td>
<td>0.316</td>
<td>0.124</td>
<td>0.083</td>
</tr>
<tr>
<td>9</td>
<td>0.331</td>
<td>0.184</td>
<td>0.135</td>
</tr>
<tr>
<td>10</td>
<td>0.518</td>
<td>0.138</td>
<td>0.098</td>
</tr>
<tr>
<td>11</td>
<td>0.219</td>
<td>0.096</td>
<td>0.046</td>
</tr>
<tr>
<td>12</td>
<td>0.219</td>
<td>0.096</td>
<td>0.046</td>
</tr>
<tr>
<td>13</td>
<td>0.310</td>
<td>0.138</td>
<td>0.096</td>
</tr>
<tr>
<td>14</td>
<td>0.241</td>
<td>0.139</td>
<td>0.097</td>
</tr>
<tr>
<td>15</td>
<td>0.353</td>
<td>0.175</td>
<td>0.120</td>
</tr>
<tr>
<td>16</td>
<td>0.271</td>
<td>0.138</td>
<td>0.095</td>
</tr>
<tr>
<td>17</td>
<td>0.096</td>
<td>0.218</td>
<td>0.147</td>
</tr>
<tr>
<td>18</td>
<td>0.338</td>
<td>0.187</td>
<td>0.121</td>
</tr>
<tr>
<td>19</td>
<td>0.279</td>
<td>0.136</td>
<td>0.083</td>
</tr>
<tr>
<td>20</td>
<td>0.290</td>
<td>0.142</td>
<td>0.099</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Communalities for PINDIS transformations

<table>
<thead>
<tr>
<th>Subject No.</th>
<th>Z, X(I)</th>
<th>ZW(I), X(I)</th>
<th>V(I)Z, X(I)</th>
<th>V(I)Z(I), X(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.90</td>
<td>0.90</td>
<td>0.95</td>
<td>0.97</td>
</tr>
<tr>
<td>2</td>
<td>0.80</td>
<td>0.80</td>
<td>0.91</td>
<td>0.96</td>
</tr>
<tr>
<td>3</td>
<td>0.89</td>
<td>0.89</td>
<td>0.93</td>
<td>0.97</td>
</tr>
<tr>
<td>4</td>
<td>0.92</td>
<td>0.93</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>5</td>
<td>0.91</td>
<td>0.91</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>6</td>
<td>0.95</td>
<td>0.95</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>7</td>
<td>0.84</td>
<td>0.84</td>
<td>0.92</td>
<td>0.93</td>
</tr>
<tr>
<td>8</td>
<td>0.93</td>
<td>0.94</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>9</td>
<td>0.98</td>
<td>0.89</td>
<td>0.95</td>
<td>0.97</td>
</tr>
<tr>
<td>10</td>
<td>0.90</td>
<td>0.90</td>
<td>0.95</td>
<td>0.97</td>
</tr>
<tr>
<td>11</td>
<td>0.75</td>
<td>0.75</td>
<td>0.87</td>
<td>0.97</td>
</tr>
<tr>
<td>12</td>
<td>0.92</td>
<td>0.92</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>13</td>
<td>0.19</td>
<td>0.21</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>14</td>
<td>0.88</td>
<td>0.88</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>15</td>
<td>0.83</td>
<td>0.83</td>
<td>0.90</td>
<td>0.97</td>
</tr>
<tr>
<td>16</td>
<td>0.85</td>
<td>0.85</td>
<td>0.93</td>
<td>0.95</td>
</tr>
<tr>
<td>17</td>
<td>0.77</td>
<td>0.77</td>
<td>0.88</td>
<td>0.96</td>
</tr>
<tr>
<td>18</td>
<td>0.88</td>
<td>0.88</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td>19</td>
<td>0.78</td>
<td>0.79</td>
<td>0.91</td>
<td>0.95</td>
</tr>
<tr>
<td>20</td>
<td>0.91</td>
<td>0.91</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>Mean</td>
<td>0.83</td>
<td>0.84</td>
<td>0.93</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Examination of the correspondence between the common sense and higher order of conceptualization

In order to examine the degree of conceptual overlap between the theoretical representation offered by Eysenck and the social representation obtained on the basis of the British sample, we compared the group solution for the British sample with the theoretical representation which was entered as an hypothesis configuration in a PINDIS analysis and the obtained untransformed communality was 0.51, which converges with the value obtained from the German sample.

Examination of the cross-cultural correspondence

The two configurations obtained from the British and German samples were compared in order to examine the degree of conceptual overlap between the two cultural communities. The two group solutions were entered into a PINDIS analysis and the resulting untransformed communality was 0.95, showing a high degree of overlap.

Discussions and conclusions

The main findings of the second study consist in the remarkably low degree of intersubjective variation and the high degree of intercultural correspondence in the semantic representation of person terms. The first of these two findings may not be so surprising for various reasons. For example, the highly contained and exclusively semantic context within which judgments of similarity are made means that one is practically ascertaining dictionary definitions of the person terms, i.e. the relational and implicative references between the terms. If it were the case that such dictionary definitions were in themselves variable and not normative or conventionalized then communication and intersubjectivity would be impossible. This means that the stability of the findings refer to a knowledge structure which people draw upon. It is important to note however that such knowledge structures constitute idealized abstractions which are both the preconditions and consequences of the use of person terms in everyday discourse and yet they appear in this idealized form nowhere during routine discourse, except perhaps in ‘reflective’ comments on personality as such. That this form of abstracted knowledge is available to common sense is demonstrated by Semin et al. (1981), but also in the second study, insofar as this decontextualized knowledge is manifested in the highly intersubjective representations provided by each subject.

Such idealized knowledge structures obviously have no pragmatic reference. The distinctive feature of ‘meaning in use’, or meaning in pragmatic contexts, however, is that it is situated, or indexical (cf. Garfinkel and Sacks, 1970; Mehan and Wood, 1975). That is, meanings of person terms in pragmatic contexts are predicated in part on idealized knowledge structures (since they function in a constitutive manner) but largely on the extralinguistic properties of the situations in which dialogue about persons take place. It must also be emphasized that dialogue is characterized by negotiation, interaction, and process, i.e. meanings are not fixed or static. The implications of such considerations is that scientific representations of personality which are contained in circumplex or factor analytic models are largely dictionary definitions of the terms that are employed. While our empirical findings suggest that the circumplex model proposed by Eysenck does not supersede
common sense knowledge, the conceptual analysis offered here specifies the peculiar status of this knowledge as well as the nature of the knowledge structures it is based upon. Circumplex models, such as the one we examined, constitute representations of person terms as they are found in very specific types of circumstances in everyday discourse. They refer primarily to static knowledge structures which are both constitutive of everyday discourse and reconstituted therein (cf. Giddens, 1976). The distinctive feature of such knowledge structures is that although they are ‘enabling’ for everyday discourse about persons, they do not enter as objective manifestations of discourse about persons. As Giddens puts it, they are ‘unintended consequences’ (1983) of dialogue. Given these considerations, circumplex models such as the one proposed by Eysenck or others (cf. Hogan, 1983) occupy a relatively peculiar status. They constitute on the one hand representations of idealized knowledge structures as contained in language and, on the other hand, aim to capture, paradoxically, the dynamic interpersonal features of social interaction from a person-centred perspective. However, if these models only constitute idealized knowledge structures, then such extrapolations about dynamic interpersonal features of social interaction are inadmissible, since they are not contained in such models. If one were to subscribe to the distinction between ‘langue’ and ‘parole’ as suggested by Saussure, then one would locate these models on the side of langue, and they would have little if anything to suggest about speech, which has dialogical, processual and negotiated features and thus refers to a different reality than the one contained in such models. Thus, the answer to the original question of whether or not these scientific models are superior in any sense is not only negative, but also that such models are highly specific and refer to a domain, which is characterized by historically stable knowledge structures. This means that one is missing an essential aspect of common sense knowledge, namely the translation of this constitutive knowledge into everyday practice, which is discourse about persons. The idealized metaphor does not elucidate the ‘application rules’ by which such terms are actually employed and, to our knowledge there is very little, if any, work done on this subject. The examination of how people apply person terms and when they apply them is an important question which ensues upon the distinction made above. Analyses of the dialogical aspects of person terms would elucidate the processes involved in the interpretation of actions, and the negotiation of interpretations. The research direction that our work suggests is a more careful analysis of person terms in terms of ordinary discourse where they feature naturally and an analysis of their application rules in everyday life.

*One might argue that the work done within an information processing metaphor on social cognition and concerned with theoretical constructs such as prototypes, schemata, scripts, etc. concerned with principles of economy in the processing of information and the reduction of the complexity of the social world is pertinent to this issue. These approaches are intended to examine how social information is processed, represented, organized and elicited under the influence of organizing principles such as schema. The underlying theoretical metaphor of information processing is however fraught with considerable difficulties (cf. Coulter, 1979, 1983; Gergen, 1982; Malcolm, 1971; Moscovici, 1981, 1982, *inter alia*). To that extent their potential contribution is not discussed here.*
REFERENCES

RÉSUMÉ

Deux études sont rapportées. La première examine la mesure dans laquelle des modèles scientifiques de la personnalité diffèrent des représentations sociales quotidiennes de la personnalité. La seconde analyse les variations intersubjectives dans l‘organisation des théories quotidiennes de la personnalité par un examen du champ sémantique dans lequel les traits sont représentés. On soutient que les modèles hypothético-dédutifs de la personnalité se basent essentiellement sur les descriptions langagières de personnes et ne constituent pas des modèles se basant essentiellement sur un contexte linguistique, plutôt que sur des considérations extra-linguistiques quant à l‘interaction sociale dans laquelle les termes personnels figurent de façon centrale. Les deux études offrent un support empirique aux deux arguments. Finalement, une comparaison cross-culturelle de la représentation sémantique des traits est offerte.

ZUSAMMENFASSUNG