Deep inelastic lepton production of spin-one hadrons

A. Bacchetta and P. J. Mulders
Division of Physics and Astronomy, Faculty of Science, Free University, De Boelelaan 1081, NL-1081 HV Amsterdam, the Netherlands
(Received 13 July 2000; published 19 October 2000)

In this paper we analyze deep inelastic one-particle inclusive processes for the case of spin-one targets or for the case of spin-one produced hadrons, such as ρ mesons. This allows the measurement of new distribution and fragmentation functions not available in the spin-half case, and provides new ways to probe functions otherwise difficult to measure. We will analyze only contributions leading order in 1/Q, but we will include effects of the transverse momentum of partons. We also include time-reversal odd functions.

PACS number(s): 13.60.Hb, 13.85.Ni, 13.87.Fh

I. INTRODUCTION

Cross sections in deep inelastic scattering (DIS) can be expressed in terms of distribution and fragmentation functions, which provide information on the quark and gluon structure of hadrons. The energy scale of the process is given by Q^2 = −q^2, q being the four-momentum transfer of the lepton. Depending on the number of observables one is able to measure, one can extract a variety of functions. The functions appearing in leading order in 1/Q can be interpreted as partonic probability densities.

We will study the case of one-particle inclusive experiments, which require the measurement of one hadron among the ones produced in the scattering event. We will emphasize the importance of including transverse momenta of partons. We will also include time-reversal odd functions. We will give a systematic list of the various functions that come into play up to leading order in 1/Q when we deal with either spin-1 targets or spin-1 outgoing hadrons. The second case is of interest in analyzing vector meson production.

To properly study the distribution and fragmentation functions including transverse momentum dependence, we will start from a field-theoretical formalism, as outlined in [1]. This approach has been fully exploited only to study spin-1/2 targets and spin-1/2 outgoing hadrons. After an overview of the general properties of spin-1 particles and of the general formalism needed to deal with them (Sec. II), we turn to the most general parametrization of the correlation functions when spin-1 hadrons are included and we define the distribution and fragmentation functions (Sec. III). Distribution and fragmentation functions integrated over transverse momenta have been partially studied already in a number of papers [2–4]. An incomplete treatment of transverse momentum dependent functions has been performed in [5].

The distribution functions for a spin-1 target could be used for the deuteron, but is not the main goal of our study as the deuteron is in essence a weakly bound system of two spin-1/2 nucleons. The spin-1 distribution functions are useful as a passage to the fragmentation functions for spin-1 hadrons. The latter, however, require final state polarimetry of the produced hadron, i.e. the study of the angular distribution of its decay products. The most common of such hadrons is the ρ meson. It is abundantly produced in lepton production experiments, and it should be possible to measure its polarization in detail, as has already been done in diffractive production [6–8] and in hadronic Z^0 decay [9]. Another possibility is the observation of polarization in the inclusive lepton production of φ mesons, for which there should be less hadronic background.

In the last section we focus more specifically on deep-inelastic lepton production of spin-1 hadrons and we list all the possible cross sections for different polarization conditions in terms of the usual spin-1/2 distribution functions and the newly defined spin-1 fragmentation functions.

II. DESCRIPTION OF SPIN-ONE PARTICLES

The description of particles with spin can be attained by using a spin density matrix ρ in the rest frame of the particle. The parametrization of the density matrix for a spin-J particle is conveniently performed with the introduction of irreducible spin tensors up to rank 2J. For example, the density matrix of a spin-1/2 particle can be decomposed on a Cartesian basis of 2×2 matrices, formed by the identity matrix and the three Pauli matrices,

$$\rho = \frac{1}{2} (1 + S^I \alpha^I),$$

where we introduced the (rank-one) spin vector S^I.

To parametrize the density matrix of a spin-1 particle we can choose a Cartesian basis of 3×3 matrices, formed by the identity matrix, three spin matrices Σ^I (generalization of the Pauli matrices to the three-dimensional case) and five extra matrices Σ^ij. These last ones can be built using bilinear combinations of the spin matrices. In three dimensions these combinations are no longer dependent on the spin matrices themselves, as would be for the Pauli matrices. We choose them to be (see [10] and [11] for a comparison)

$$\Sigma^{ij} = \frac{1}{2} (\Sigma^I \Sigma^j + \Sigma^j \Sigma^i) - \frac{2}{3} \delta^{ij} \delta^I. \quad (2)$$

With these preliminaries, we can write the spin density matrix as

$$\rho = \frac{1}{3} \left[ (1 + \frac{3}{2} S^I \Sigma^I + 3 T^I \Sigma^{ij} \right], \quad (3)$$
III. CORRELATION FUNCTIONS

Cross sections of DIS events are proportional to the contraction between a purely leptonic tensor and a purely hadronic tensor. While the leptonic tensor can be calculated theoretically, we are not able to do the same for the hadronic tensor. In the Bjorken limit, it is possible to separate the hadronic tensor into a hard part \( T \) and a soft part, containing information on the parton distribution of the target hadron and one describing the hadronization of a quark into the detected final state hadron.

In Appendix A we give some explicit forms and other details of the density matrices and parameters involved in Eq. (5). In an arbitrary frame, different from the rest frame, the spin vector and tensor satisfy the conditions \( P_\mu S^\mu = 0 \) and \( P_\mu T^{\mu\nu} = 0 \), where \( P_\mu \) is the momentum of the hadron. In Appendix B we also discuss how the tensor polarization of a produced meson can be extracted from the angular distribution of the decay products \( \pi^+ \pi^- \).

To express the spin vector and tensor, one describing the quark distributions and fragmentation, one describing the hadronic tensor. While the leptonic tensor can be calculated theoretically, we are not able to do the same for the hadronic tensor. In the Bjorken limit, it is possible to separate the hadronic tensor into a hard part \((T)\) and a soft part, containing information on the parton distribution of the target hadron and one describing the hadronization of a quark into the detected final state hadron.

In leading order in \( 1/Q \) (also referred to as “leading twist” or “twist-2”) we are concerned only with quark-quark correlation functions entering the handbag diagram in Fig. 1. They are defined as follows (using Dirac indices \( \alpha \) and \( \beta \)):

\[
\Phi_{\alpha\beta}(p, P, S, T) = \int \frac{d^4 \xi}{(2\pi)^4} e^{-ip\cdot\xi} \langle P, S, T | \bar{\psi}_\beta(\xi) \psi_\alpha(0) | P, S, T \rangle,
\]

\[
\Delta_{\alpha\beta}(k, P_\perp, S_\perp, T_\perp) = \int \frac{d^4 \xi}{(2\pi)^4} e^{i k\cdot\xi} \langle 0 | \psi_\alpha(\xi) | P_\perp, S_\perp, T_\perp \rangle
\]

\[
\times \langle P_\perp, S_\perp, T_\perp | \bar{\psi}_\beta(0) | 0 \rangle.
\]

FIG. 1. Diagrammatic representation of semi-inclusive DIS.

and describe the quark distribution and fragmentation, respectively. Here, \( p \) is the momentum of the quark emerging from the target, while \( k \) is the momentum of the quark decaying into an outgoing hadron after being struck by a virtual photon (see Fig. 1). The vector \( P \) (\( P_h \)) is the momentum of the hadronic target (outgoing hadron), the quantities \( S \) (\( S_h \)) and \( T \) (\( T_h \)) are the spin vector and tensor.

The correlation functions can be expressed in several terms, each one being a combination of the Lorentz vectors \( p \) and \( P \) (\( P_h \)), the Lorentz pseudo-vector \( S \) (\( S_h \)), the Lorentz tensor \( T \) (\( T_h \)) and the Dirac structures

\[
\gamma_5, \gamma^\mu, \gamma^\mu \gamma_5, i\sigma^{\mu\nu} \gamma_5.
\]

The spin vector and tensor can only appear linearly in the decomposition. Moreover, each term of the full expression has to satisfy the conditions of Hermiticity and parity invariance:

\[
\Phi(p, P, S, T) = \gamma^0 \Phi^\dagger(p, P, S, T) \gamma^0 \quad \text{Hermiticity,} \quad (8)
\]

\[
\Phi(p, P, S, T) = \gamma^0 \Phi^\dagger(\bar{p}, \bar{P}, -\bar{S}, \bar{T}) \gamma^0 \quad \text{parity,} \quad (9)
\]

\[
\Phi(p, P, S, T) = \gamma^1 \gamma^3 \Phi^*(\bar{p}, \bar{P}, \bar{S}, \bar{T}) \gamma^3 \gamma^1 \quad \text{time reversal.} \quad (10)
\]

For the fragmentation part \( \Delta \), containing out-states in the definition, time-reversal invariance cannot be used as a constraint [14–16] and one is left with the so-called time-reversal odd (TR odd) contributions, leading in particular to interesting single spin asymmetries [17,18]. We will include the TR odd contributions in our discussion of \( \Phi \), because it will be used as the general case of correlation functions. Throughout the rest of the article we will put time-reversal odd terms between brackets to make them easily identifiable.
The most general decomposition of the correlation function $\Phi$ imposing Hermiticity and parity is

$$
\Phi(p,P,S,T) = M A_1 + A_2 P + A_3 \hat{P} + \left( \frac{A_4}{M} \sigma_{\mu\nu} P^\mu P^\nu \right) + (iA_5) P \cdot S \gamma_5 + M A_6 S \gamma_5 + A_7 \frac{P \cdot S}{M} \gamma_5 + A_8 \frac{P \cdot S}{M} \hat{P} \gamma_5
$$

$$
+ iA_9 \sigma_{\mu\nu} \gamma_5 S^\mu P^\nu + iA_{10} \sigma_{\mu\nu} \gamma_5 S^\mu P^\nu + iA_{11} \frac{P \cdot S}{M^2} \sigma_{\mu\nu} \gamma_5 P^\mu P^\nu + \left( \frac{A_{12}}{M^2} \epsilon_{\mu\nu\rho\sigma} \gamma_5 P^\rho P^\sigma \right) + A_{13} \frac{M}{P^\mu} P^\mu \gamma_5 \hat{P}
$$

$$
+ \frac{A_{14}}{M^2} P \mu P_\nu T^{\mu\nu} + \frac{A_{15}}{M^2} P \mu P_\nu T^{\mu\nu} \hat{P} \gamma_5 + \left( \frac{A_{16}}{M^2} P \mu P_\nu T^{\mu\nu} \sigma_{\rho\sigma} P^\rho P^\sigma \right) + A_{17} P \mu T^{\mu\nu} \gamma_5 + \left( \frac{A_{18}}{M^2} \sigma_{\mu\nu} \gamma_5 P^\rho P^\sigma \right).
$$

The amplitudes $A_i$ are real functions $A_i = A_i(p \cdot P, p^2)$. The decomposition of the correlation function $\Delta$ is analogous. The amplitudes $A_4$, $A_5$, $A_{12}$, $A_{16}$, $A_{18}$, $A_{19}$ and $A_{20}$ are TR odd.

In order to select leading twist contributions we perform a Sudakov decomposition of the Lorentz structures we have. We choose two light-like vectors $n_+$ and $n_-$ satisfying $n_+ \cdot n_- = 1$. We will call the plane perpendicular to these vectors the “transverse plane.” We define the two projectors

$$
g_T^{\mu\nu} = g^{\mu\nu} - n_+^{(\mu} n_-^{\nu)},
$$

$$
\epsilon_T^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} n_+^{\rho} n_-^{\sigma},
$$

where the curly braces around the indices denote symmetrization of these indices. Given a vector $a^\mu$ we will sometimes make use of the notation $a_T^\mu = g_T^{\mu\nu} a_\nu$ and we will denote its two-dimensional component lying in the transverse plane as $a_T$.

We assume the following decompositions of the Lorentz structures we are interested in:

$$
P^\mu = P^+ n_+^\mu + \frac{M^2}{2 P^+} n_-^\mu,
$$

$$
p^\mu = x P^+ n_+^\mu + P^T + p^- n_-^\mu,
$$

$$
S^\mu = S_L^+ P^+ + S_T^+ M + S_L^- - M \frac{2 P^+}{M} n_-^\mu,
$$

$$
T^{\mu\nu} = \frac{1}{2} \left[ \frac{4}{3} S_{LL} (P^+)^2 n_+^\mu n_+^\nu + M^2 n_-^\mu n_-^\nu \right] - \frac{2}{3} S_{LL} (n_-^\mu n_-^\nu) \gamma_{\mu\nu} + S_{TT}^+ \frac{M}{2 P^+} n_-^\mu n_-^\nu
$$

$$
+ \frac{1}{3} S_{LL} \left( \frac{M^2}{P^+} \right) n_+^\mu n_-^\nu.
$$

When only one hadron is considered, e.g. in inclusive DIS, there is an arbitrariness in the choice of $n_-$, though this does not affect physical observables. In processes where another hadron is present, such as one-particle inclusive leptoproduction, $n_-$ can be conveniently connected to the momentum of the produced hadron, so that $P^\mu = P_h^+ n_-^\mu + (M_h^2/2P_h^+) n_-^\mu$. This choice of light-like directions is particularly useful to analyze current fragmentation in leptoproduction. In this case one finds that up to order in $1/Q^2$ only one light-like component of the hadron momentum is relevant. If we choose the relevant component of the target momentum to be $P^+$, then the relevant component of the outgoing hadron momentum will be $P_h^-$. We need to define the decomposition of the fragmenting quark momentum $k^\mu = (1/z) P_h^- n_-^\mu + k_T^+ + k^+ n_-^\mu$, while to obtain the decomposition for the outgoing hadron’s spin vector and tensor, it is sufficient to interchange the $+$ and $-$ components in Eq. (16) and Eq. (17).

In semi-inclusive DIS one needs to consider the following integrated correlation function:

$$
\Phi(x_2, p_T) = \frac{1}{2} \int dp^- \Phi(p, P, S, T) \bigg|_{p^+ = x_2 P^+},
$$

$$
\Delta(z, k_T) = \frac{1}{4z} \int dk^+ \Delta(k, P_h^+, S_h, T_h) \bigg|_{k^- = P_h^- / z}.
$$

In inclusive processes or after integrating the semi-inclusive cross sections over the outgoing hadron’s perpendicular momentum one needs to consider the following ones:

$$
\Phi(x) = \frac{1}{2} \int d^2 p_T \int dp^- \Phi(p, P, S, T) \bigg|_{p^+ = x_2 P^+},
$$

$$
\Delta(z) = \frac{z}{4} \int d^2 k_T \int dk^+ \Delta(k, P_h^+, S_h, T_h) \bigg|_{k^- = P_h^- / z}.
$$
Note that in the case of fragmentation, it is conventional to integrate over $-z k_T$, which is the transverse momentum of the produced hadron with respect to the quark. This can be checked by applying a Lorentz transformation that does not affect the minus component or the integration over the plus component. Using coordinates $[a^-, a^+, a_T]$, the required transformation is

$$
\begin{align*}
\left[ P^-_h, M^2 - z k_T^2, 0 \right] & \rightarrow \left[ P^-_h, \frac{M^2 + z^2 k_T^2}{2P^-_h}, -z k_T \right] \\
\left[ P^-_h, z, k^+_h \right] & \rightarrow \left[ P^-_h, z \left( k^+_h + \frac{z k_T}{2P^-_h} \right), 0 \right].
\end{align*}
$$

We are going to separate different parts of the correlation functions depending on the polarization conditions they require to be observed. We will use the subscript $U$ to denote unpolarized hadrons, the subscripts $L$ and $T$ to denote respectively longitudinal and transverse vector polarization and finally the subscripts $LL$, $LT$ and $TT$ to denote longitudinal-longitudinal, longitudinal-transverse and transverse-transverse tensor polarization.

In leading order in $1/Q$, the parametrization of the $p_T$ dependent correlation function, defined in Eq. (18), is (we remind the reader that terms in parentheses are TR odd)

$$
\Phi_{U}(x, p_T) = \frac{1}{4} \left\{ f_1(x, p_T^2) S_{LT} p_T \frac{\gamma_5}{M} \hat{h}_+ + \left( h_1^L(x, p_T^2) \sigma_{\mu \nu} \frac{p_T^\mu}{M} n_+^\nu \right) \right\},
$$

$$
\Phi_{L}(x, p_T) = \frac{1}{4} \left\{ g_{1L}(x, p_T^2) S_L \gamma_5 \hat{h}_+ + \left( h_1^L(x, p_T^2) \sigma_{\mu \nu} \gamma_5 \frac{p_T^\mu}{M} n_+^\nu \right) \right\},
$$

$$
\Phi_{T}(x, p_T) = \frac{1}{4} \left\{ g_{1T}(x, p_T^2) S_T p_T \frac{\gamma_5}{M} \hat{h}_+ + \left( h_1^T(x, p_T^2) \sigma_{\mu \nu} \gamma_5 \frac{p_T^\mu}{M} n_+^\nu \right) \right\},
$$

$$
\Phi_{LL}(x, p_T) = \frac{1}{4} \left\{ f_{1LL}(x, p_T^2) S_{LL} \hat{h}_+ + \left( h_1^{LL}(x, p_T^2) \sigma_{\mu \nu} \frac{p_T^\mu}{M} n_+^\nu \right) \right\},
$$

$$
\Phi_{LT}(x, p_T) = \frac{1}{4} \left\{ f_{1LT}(x, p_T^2) \frac{S_{LT} p_T}{M} \gamma_5 \hat{h}_+ + \left( g_{1LT}(x, p_T^2) e_T^\mu S_{LT} \frac{p_T^\nu}{M} \gamma_5 \frac{p_T^\rho}{M} \hat{h}_+ \right) + \left( h_1^{LT}(x, p_T^2) \sigma_{\mu \nu} \gamma_5 \frac{p_T^\mu}{M} n_+^\nu \right) \right\},
$$

$$
\Phi_{TT}(x, p_T) = \frac{1}{4} \left\{ f_{1TT}(x, p_T^2) \frac{p_T^\mu}{M^2} S_{TT} \frac{p_T^\nu}{M} \gamma_5 \frac{p_T^\rho}{M} \hat{h}_+ + \left( g_{1TT}(x, p_T^2) e_T^\mu S_{TT} \frac{p_T^\nu}{M} \gamma_5 \frac{p_T^\rho}{M} \hat{h}_+ \right) + \left( h_1^{TT}(x, p_T^2) \sigma_{\mu \nu} \gamma_5 \frac{p_T^\mu}{M} n_+^\nu \right) \right\}.
$$

The parametrization of the correlation function after integration upon $p_T$, as defined in Eq. (20), is

$$
\Phi_{U}(x) = \frac{1}{4} f_1(x) \hat{h}_+,
$$

$$
\Phi_{L}(x) = \frac{1}{4} g_1(x) S_L \gamma_5 \hat{h}_+,
$$

$$
\Phi_{T}(x) = \frac{1}{4} h_1(x) \sigma_{\mu \nu} \gamma_5 \frac{p_T^\mu}{M} n_+^\nu S_T,
$$

$$
\Phi_{LL}(x) = \frac{1}{4} f_{1LL}(x) S_{LL} \hat{h}_+,
$$

$$
\Phi_{LT}(x) = \frac{1}{4} \left\{ g_{1LT}(x) e_T^\mu S_{LT} \frac{p_T^\nu}{M} \gamma_5 \frac{p_T^\rho}{M} \hat{h}_+ \right\} + \left( h_1^{LT}(x) \sigma_{\mu \nu} \gamma_5 \frac{p_T^\mu}{M} n_+^\nu \right),
$$

$$
\Phi_{TT}(x) = 0.
$$

where
The function \( h_1(x) \) can be written as

\[
g_1(x) = \int d^2p_T \ g_{1L}(x,p_T^2),
\]

\[
h_1(x) = \int d^2p_T \ h_1(x,p_T^2)
\]

\[
= \int d^2p_T \left( h_{1T}(x,p_T^2) + \frac{p_T^2}{2M^2} h_{1T}^+(x,p_T^2) \right),
\]

\[
h_{1LT}(x) = \int d^2p_T \ h_{1LT}(x,p_T^2)
\]

\[
= \int d^2p_T \left( h_{1LT}^+(x,p_T^2) + \frac{p_T^2}{2M^2} h_{1LT}^{1T}(x,p_T^2) \right).
\]

The decomposition of the correlation function \( \Delta \) is identical after the replacements \( \{x,p_T,S,M,n_+\} \rightarrow \{z,k_T,S_h,M_h,n_-\} \) and the notation replacement \( f \rightarrow D \), \( g \rightarrow H \).

In Appendix C all possible distribution functions are projected out of the complete correlation function. In Tables I and II we give a summary of all the distribution functions, respectively before and after integration upon \( p_T \).

The function \( f_{1LL} \) has been already studied in [2], where it was given the name \( b_1 \) (note that actually \( f_{1LL} = -\frac{1}{3} b_1 \)). Although this name has already been used also by other authors (e.g. [5,4]), we felt the need to change it to follow a more systematic naming. The function \( f_{1LT} \) is analogous to the function \( c_1 \) introduced in [5], although the different approach followed in that article requires a more careful comparison.

It is worthwhile to note that, as suggested by Eq. (34), dealing with spin-1 particles offers the possibility of measuring a time-reversal odd function in leading twist and without considering the intrinsic transverse momentum. The particular fragmentation function \( h_{1LT} \), equivalent to the distribution function \( h_{1LT} \), has been introduced in [3], where it was named \( h_1^{1LT} \).

It is sometimes useful (for instance for calculation of azimuthal asymmetries) to consider the \( p_T^2 \)-weighted function

\[
\frac{1}{M} \Phi^a_{\beta}(x) = \int d^2p_T \frac{p_T^2}{M} \Phi(x,p_T).
\]

Non-vanishing at twist two we have

\[
\frac{1}{M} (\Phi^a_{\beta})_{LT}(x) = -\frac{1}{4} (h_1^{1LT}(x) \sigma^{\mu n_+ + \nu}_\mu),
\]

\[
\frac{1}{M} (\Phi^a_{\beta})_{LT}(x) = -\frac{1}{4} (h_1^{1LT}(x) S_{\mu} \sigma^{\mu n_+ + \nu}_\mu),
\]

\[
\frac{1}{M} (\Phi^a_{\beta})_{LT}(x) = \left( g_{1LT}^{(1)}(x) \epsilon^{\mu n_+ + \nu}_\mu \right),
\]

\[
\frac{1}{M} (\Phi^a_{\beta})_{TT}(x) = \left( h_1^{1LT}(x) S_{TT}^{\sigma \mu} \sigma^{\mu n_+ + \nu}_\mu \right),
\]

where we used the notation

<table>
<thead>
<tr>
<th>[ \gamma^+ ]</th>
<th>[ \gamma^+ \gamma_5 ]</th>
<th>[ i\sigma^{ij} \gamma_5 ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR even</td>
<td>TR odd</td>
<td>TR even</td>
</tr>
<tr>
<td>( U )</td>
<td>( f_1 )</td>
<td>( g_1 )</td>
</tr>
</tbody>
</table>
where it is understood that a charge squared weighted sum over quark flavors has to be included. The full form of the hadronic tensor can be obtained by introducing the correlation functions described in the previous section (see Appendix D). To shorten the formulas we will use the notation

\[ I[\cdots] = \int d^2 p_T d^2 k_T \delta^2(p_T + q_T - k_T) \cdots. \]

It is convenient to express the perpendicular vectors with respect to the only measured perpendicular direction, i.e. that of \( p_{h \perp} \), the outgoing hadron’s perpendicular momentum. Defining the unit vector in this direction \( \hat{h} = p_{h \perp}/|p_{h \perp}| \), we are then going to use the following notation:

\[ a_\perp = a_\perp \hat{h} + a_\parallel e_\parallel \hat{h}_\parallel. \]

As has been shown in [1], the difference between \( g_\perp^\mu\nu \) in Eq. (12) and \( g_\perp^\mu\nu \) in Eq. (48) is of order 1/\( Q^2 \) or (neglecting order 1/\( Q^2 \) parts)

\[ g_\perp^\mu\nu = g_\perp^\mu\nu - \frac{\sqrt{2} n(\mu q_T^\nu)}{Q} \quad \text{or} \quad g_\parallel^{\mu\nu} = g_\parallel^{\mu\nu} - \frac{Q_T}{Q} \sqrt{2} n(\mu \hat{n}_\nu), \]

where \( Q_T = |p_{h \perp}|/z_h \). This relation implies that if we have already project out a transverse vector, the additional projection with \( g_\perp^{\mu\nu} \) does not give additional terms, i.e. \( a_\perp r = g_{\perp}^{\mu\nu} a_{\perp T} = a_{\perp T} \), even if \( a_\perp \neq a_\perp \) (see Appendix B). This is true up to corrections of order 1/\( Q^2 \).

We will indicate as \( \phi_0^h \) the angle between \( S_T \) and \( p_{h \perp} \), as \( \phi_0^h \) the angle between \( p_{h \perp} \) and the scattering plane, and as \( \phi_S^h \) the angle between \( S_T \) and the scattering plane.

For the tensor \( T_h \) we introduce azimuthal angles defined as

\[ \tan(\phi_0^{h \perp}) = \tan(\phi_0^{h \perp}) - \phi_0^h = \frac{S_{h \perp}}{S_{h \perp}^T}, \]

\[ \tan(2 \phi_0^{h \perp}) = \tan(2 \phi_0^{h \perp}) - 2 \phi_0^h = \frac{S_{h \perp}^T}{S_{h \perp}^T}, \]

and the quantities

\[ |S_h| = \sqrt{(S_{h \perp})^2 + (S_{h \perp}^T)^2}, \]

\[ |S_h| = \sqrt{(S_{h \perp})^2 + (S_{h \perp}^T)^2}. \]

In a real experiment, where polarimetry is performed on the final-state hadron, cross section will not depend on the spin tensor parameters but rather on the analyzing powers determined from the momenta of decay products. We omit writing explicit differential cross sections in terms of the momenta of the decay products, but we merely point out that spin tensor parameters in cross section formulas must be replaced by the corresponding analyzing powers, as given in Appendix B.
A. Unpolarized lepton beam and unpolarized target (UU)

In this case, the differential cross section is

$$\frac{d\sigma_{UL}(1+H \to l' + \bar{l} + X)}{dx_B dz_h dy d^2\mathbf{p}_{h\perp}} = \frac{4\pi \alpha^2 s}{Q^4} \left( 1 - y - \frac{y^2}{2} \right) x_B \left[ S_{h,LL} I[f_1 D_{1,LL}] + |S_{h,LT}| \cos(\phi_{h,LT}) I \left[ \frac{k^z}{M_h} f_1 D_{1,LT} \right] \right. \\
\left. + |S_{h,TT}| \cos(2\phi_{h,TT}) I \left[ \frac{(k^z)^2 - (k^\perp)^2}{M_h^2} f_1 D_{1,TT} \right] \right], \quad (57)$$

while after integration over \( \mathbf{p}_{h\perp} \) the differential cross section is

$$\frac{d\sigma_{UU}(1+H \to l' + \bar{l} + X)}{dx_B dz_h dy} = \frac{4\pi \alpha^2 s}{Q^4} \left( 1 - y - \frac{y^2}{2} \right) x_B \left[ S_{h,LL} f_1(x_B) D_{1,LL}(z_h) \right]. \quad (58)$$

B. Polarized lepton beam and unpolarized target (LU)

Indicating by \( \lambda_e \) the helicity of the incoming lepton, the differential cross section is

$$\frac{d\sigma_{UL}(1+H \to l' + \bar{l} + X)}{dx_B dz_h dy d^2\mathbf{p}_{h\perp}} = \frac{4\pi \alpha^2 s}{Q^4} \lambda_e y \left( 1 - y - \frac{y^2}{2} \right) x_B \left[ |S_{h,LT}| \sin(\phi_{h,LT}) I \left[ \frac{k^z}{M_h} f_1 G_{1,LT} \right] \right. \\
\left. + |S_{h,TT}| \sin(2\phi_{h,TT}) I \left[ \frac{(k^z)^2 - (k^\perp)^2}{M_h^2} f_1 G_{1,TT} \right] \right]. \quad (59)$$

C. Unpolarized lepton beam and longitudinally polarized target (UL)

$$\frac{2\pi}{d\phi} \frac{d\sigma_{UL}(1+H \to l' + \bar{l} + X)}{dx_B dz_h dy d^2\mathbf{p}_{h\perp}} = \frac{4\pi \alpha^2 s}{Q^4} x_B \left( 1 - y - \frac{y^2}{2} \right) S_L \left[ |S_{h,LT}| \sin(\phi_{h,LT} - \phi_{h,l}) I \left[ \frac{k^z}{M_h} g_{1L} G_{1,LT} \right] \right. \\
\left. + |S_{h,TT}| \cos(2\phi_{h,TT}) I \left[ \frac{(k^z)^2 - (k^\perp)^2}{M_h^2} g_{1L} G_{1,TT} \right] \right] \\
+ \frac{4\pi \alpha^2 s}{Q^4} x_B \left( 1 - y \right) S_L \left[ |S_{h,LT}| \sin(\phi_{h,LT} + \phi_{h,l}) I \left[ \frac{p^z}{M} h_{1L}^+ H_{1,LT} \right] \right. \\
\left. + |S_{h,TT}| \sin(2\phi_{h,TT}) I \left[ \frac{p \cdot k}{MM_h} h_{1L}^+ H_{1,LT} \right] + S_{h,LL} \sin(2\phi_{h,l}) I \left[ \frac{p^z}{MM_h} h_{1L}^+ H_{1,LT} \right] \right) \\
\left. - |S_{h,LT}| \sin(\phi_{h,LT} - 3\phi_{h,l}) I \left[ \frac{p^z[(k^z)^2 - (k^\perp)^2] - 2k^z k^\perp p^\perp}{2MM_h^2} h_{1L}^+ H_{1,LT} \right] - |S_{h,TT}| \right] \times \sin(2\phi_{h,TT} - 4\phi_{h,l}) I \left[ \frac{2[(k^z)^2 - (k^\perp)^2] (k^p k^z - k^z k^p)}{2MM_h^3} h_{1L}^+ H_{1,LT} \right]. \quad (60)$$

D. Polarized lepton beam and longitudinally polarized target (LL)

$$\frac{d\sigma_{UL}(1+H \to l' + \bar{l} + X)}{dx_B dz_h dy d^2\mathbf{p}_{h\perp}} = \frac{4\pi \alpha^2 s}{Q^4} 2 \lambda_e S_L x_B y \left( 1 - y \right) \left[ S_{h,LL} I[g_{1L} D_{1,LL}] + |S_{h,LT}| \cos(\phi_{h,LT}) I \left[ \frac{k^z}{M_h} g_{1L} D_{1,LT} \right] \right. \\
\left. + |S_{h,TT}| \cos(2\phi_{h,TT}) I \left[ \frac{(k^z)^2 - (k^\perp)^2}{M_h^2} g_{1L} D_{1,TT} \right] \right]. \quad (61)$$
E. Unpolarized lepton beam and transversely polarized target (UT)

\[
\frac{2\pi d\sigma_{UT}(l+\bar{H}\rightarrow l'+\bar{h}+X)}{d\phi' dx_B dz_B dy d^2P_{h\perp}} = \frac{4\pi\alpha^2 s}{Q^4} x_B \left( \frac{1 - y - \frac{y^2}{2}}{} \right) |S_{Tf} \left[ |S_{h,LT}| \cos(\phi_S^l - \phi_S^d) \sin(\phi_{h,LT}^d - \phi_{h}^d) I\left( \frac{p^x k^y}{MM_h^2} \right) g_{1LT} \left( G_{1LT} \right) \right]
\]

\[+ |S_{h,TT}| \cos(\phi_S^l - \phi_S^d) \sin(\phi_{h,TT}^d - \phi_{h}^d) I\left( \frac{p^x (k^x)^2 - (k^y)^2}{MM_h^2} \right) g_{1TT} \left( G_{1TT} \right) \]

\[+ |S_{h,LT}| \sin(\phi_S^l - \phi_S^d) \cos(\phi_{h,LT}^d - \phi_{h}^d) I\left( \frac{p^y k^y}{MM_h^2} \right) g_{1LT} \left( G_{1LT} \right) \]

\[+ |S_{h,TT}| \sin(\phi_S^l - \phi_S^d) \cos(\phi_{h,TT}^d - \phi_{h}^d) I\left( \frac{2 p^x k^y}{MM_h^2} \right) g_{1TT} \left( G_{1TT} \right) \}

\]

\[+ \frac{4\pi\alpha^2 s}{Q^4} x_B (1 - y) |S_{Tf} \left[ |S_{h,LT}| \sin(\phi_{h,LT}^d + \phi_{h}^d) I h_1 \left( H_{1LT} \right) + |S_{h,TT}| \right] \]

\[\times \sin(2 \phi_{h,TT}^d + \phi_S^l - \phi_S^d) I \left( \frac{(p^y)^2 - (p^x)^2}{2M_h^2} \right) h_1^+ \left( H_{1TT} \right) - |S_{h,TT}| |\sin(2 \phi_{h,TT}^d - \phi_S^l - 3 \phi_S^d) I \right) \]

\[\times I \left[ \frac{k^x (k^x)^2 - \frac{k_T^2}{2}}{M_h^3} h_1 \left( H_{1TT} \right) \right] + |S_{h,TT}| \sin(2 \phi_{h,TT}^d - \phi_S^l + \phi_S^d) \]

\[\times I \left[ \frac{k^x ((p^y)^2 - (p^x)^2) + 2 p^y p^x k^y}{2M_h^2} h_1^+ \left( H_{1TT} \right) \right] - |S_{h,LT}| \sin(\phi_S^l - 3 \phi_S^d) \]

\[\times I \left[ \frac{k^x ((p^y)^2 - (p^x)^2) - 2 p^y p^x k^y}{2M_h^2} h_1^+ \left( H_{1LT} \right) \right] - |S_{h,TT}| \sin(2 \phi_{h,TT}^d + \phi_S^l - 4 \phi_S^d) \]

\[\times I \left[ \frac{(k^x)^2 - (k^y)^2}{4M_h^2} h_1^+ \left( H_{1LT} \right) \right] - |S_{h,TT}| \sin(2 \phi_{h,TT}^d - \phi_S^l - 3 \phi_S^d) \]

\[\times I \left[ \frac{k^x ((p^y)^2 - (p^x)^2) - \frac{k_T^2}{2}}{2M_h^3} h_1^+ \left( H_{1TT} \right) \right] - |S_{h,TT}| \sin(2 \phi_{h,TT}^d - \phi_S^l - 3 \phi_S^d) \}

\]

(62)

After performing the integration over \(P_{h\perp}\) we obtain the cross section

\[
\frac{2\pi \ d\sigma_{UT}(l+\bar{H}\rightarrow l'+\bar{h}+X)}{d\phi' dx_B dz_B dy d^2P_{h\perp}} = \frac{4\pi\alpha^2 s}{Q^4} x_B (1 - y) |S_{Tf} \left[ |S_{h,LT}| \sin(\phi_{h,LT}^d + \phi_{h}^d) h_1(x_B) H_{1LT}(z_B) \right] .
\]

We want to point out the importance of this last case, which would allow the measurement of the chiral odd distribution function \(h_1\) together with a time-reversal odd and chiral odd fragmentation function, requiring neither contributions to be non-leading in \(1/Q\) or the measurement of the transverse momentum of the outgoing hadron.
F. Polarized lepton beam and transversely polarized target (LT)

\[
\frac{d\sigma_{LT}(\tilde{l} + \tilde{H} \rightarrow l' + \tilde{h} + X)}{d\alpha d\gamma d^{2}P_{KL}} = \frac{4\pi\alpha^{2}s}{Q^{4}}2\lambda_{e}x_{B}y\left(1 - \frac{y}{2}\right)|S_{T}|\left[S_{h,LL} \cos(\phi_{h}^{b})\frac{p^{x}}{M}g_{1T}D_{1LL} + \right. \\
+ |S_{h,LT}|\cos(\phi_{h}^{b})\cos(\phi_{h}^{LT})\frac{p^{x}(k^{x} - (k^{y})^{2})}{MM_{h}}g_{1T}D_{1LT} \\
+ |S_{h,TT}|\sin(\phi_{h}^{b})\sin(\phi_{h}^{LT})\frac{2p^{x}k^{x}k^{y}}{MM_{h}^{2}}g_{1T}D_{1LT} \\
+ \left.|S_{h,TT}|\sin(\phi_{h}^{b})\sin(\phi_{h}^{LT})\frac{2p^{x}k^{x}k^{y}}{MM_{h}^{2}}g_{1T}D_{1TT}\right].
\]  

(64)

V. CONCLUSIONS

In this paper we have studied quark distribution and fragmentation functions for hadrons with spin one. We have given a complete list of the functions that can appear at leading order in $1/Q$ in electroweak hard processes. We have included the intrinsic transverse momentum dependence, useful for the treatment of processes in which more than one hadron is involved, such as 1-particle inclusive lepton production. We have included time-reversal odd functions. In particular, time-reversal odd fragmentation functions show up in single spin asymmetries. We have not estimated the various functions, since they contain soft physics and as such are uncalculable at present. At best some positivity bounds can be given and issues like scale dependence may be studied. Some of these aspects will be addressed in future studies.

Our treatment is complete, allowing the calculation of inclusive and semi-inclusive lepton production involving spin one hadrons in the initial or final state at the tree level and up to leading order in $1/Q$, but including the full spin structure in the initial (beam and target polarization) or final state (polarimetry).

In Sec. IV we have focused on the specific process of the deep-inelastic lepton production of vector mesons ($\rho$ mesons) for which polarimetry is possible from the analysis of the decay products ($\pi \pi$ final state). We calculated all cross sections measurable with different beam and target polarization (in fact, our results provide the specific $P$-wave contribution in the more general analysis of two-pion production \cite{19} in the vicinity of the $\rho$ mass).

Among the results, we want to emphasize that vector meson lepton production off transversely polarized nucleons allows the observation of the chiral-odd transverse-spin distribution, $h_{1}(x)$, in a single spin asymmetry involving the time-reversal odd fragmentation function, $H_{1LT}(z)$. Unlike the situation involving spin 1/2 particles, this does not require any azimuthal asymmetries, although the function $H_{1LT}$ itself is not known.

ACKNOWLEDGMENTS

We would like to thank Daniel Boer and Elliot Leader for fruitful discussions. This work is supported by the Foundation for Fundamental Research on Matter (FOM) and the Dutch Organization for Scientific Research (NWO).

APPENDIX A: INTERPRETATION OF THE COMPONENTS OF THE SPIN TENSOR

A particular component of the spin tensor measures a combination of probabilities of finding the system in a certain spin state (defined in the particle rest frame).

As “analyzing” spin states we can choose the eigenstates of the spin vector operator in a particular direction. We can write the spin vector operator in terms of polar and azimuthal angles,

\[
\Sigma\hat{n}_{l} = \Sigma_{x} \cos \theta \cos \varphi + \Sigma_{y} \cos \theta \sin \varphi + \Sigma_{z} \sin \theta,
\]  

(1A)

and we can denote its eigenstates as $|m_{l(\theta,\varphi)}\rangle$, $m$ being their magnetic quantum number. The probability of finding one of these states can be calculated as

\[
P(m_{l(\theta,\varphi)}) = \text{Tr}\{\rho|m_{l(\theta,\varphi)}\rangle\langle m_{l(\theta,\varphi)}|\}.
\]  

(2A)

Inserting in Eq. (3) the spin tensor, Eq. (5), and the spin vector, Eq. (4), the explicit form of the spin density matrix $\rho$ turns out to be
From this explicit formula one can check that

\[
S_{LL} = \frac{1}{2} P(1_{(0,0)}) + \frac{1}{2} P(-1_{(0,0)}) - P(0_{(0,0)}),
\]

\[
S_{LT}^x = P(0_{(-\pi/4,0)}) - P(0_{(\pi/4,0)}),
\]

\[
S_{LT}^y = P(0_{-(\pi/2,\pi/2)}) - P(0_{(\pi/2,\pi/2)}),
\]

\[
S_{TT}^{xx} = P(0_{(\pi/2,2\pi/4)}) - P(0_{(\pi/2,\pi/4)}),
\]

\[
S_{TT}^{xy} = P(0_{(\pi/2,\pi/4)}) - P(0_{(\pi/2,0)}).
\]

Below, we suggest a diagrammatic interpretation of these probability combinations. Arrows represent spin states \(m = +1\) and \(m = -1\) in the direction of the arrow itself, while dashed lines denote spin state \(m = 0\) again in the direction of the line itself.

The probabilistic interpretations suggest straightforward bounds on the values the spin tensor parameters can achieve, namely

\[
-1 \leq S_{LL} \leq \frac{1}{2},
\]

\[
-1 \leq S_{LT}^x \leq 1,
\]

\[
-1 \leq S_{TT}^{xx} \leq 1,
\]

Finally, it is possible to define a total degree of polarization,

\[
d = \left( \frac{3}{4} S^i_i + \frac{3}{2} T^{ij} T_{ij} \right)^{1/2}
\]

\[
= \left( \frac{3}{4} [S^i_i + (S^i_i)^2 + (S^i_i)^2] + \frac{3}{2} \frac{2}{3} S^2_0 + \frac{1}{2} [(S^x_{LT})^2 + (S^y_{LT})^2]
\]

\[
+ (S^{xx}_{TT})^2 + (S^{xy}_{TT})^2 \right)^{1/2},
\]

whose value ranges between 0 and 1.

\[114004-10\]
APPENDIX B: MEASUREMENT OF THE SPIN TENSOR VIA DECAY ANALYSIS

In this appendix we show how it is possible to reconstruct the correspondence between spin tensor and analyzing powers of a $\rho$ meson by studying its decay into two pions.

In general the decay distribution of a spin-1 particle in two spin-0 particles is given by

$$W(\theta, \varphi) = \text{Tr} \{ \rho R(\theta, \varphi) \},$$

(B1)

where $\theta$ and $\varphi$ are the polar and azimuthal angles of one of the decay products in the parent particle’s rest-frame.

The decay matrix $R$ is defined as

$$R_{mn}(\theta, \varphi) = M_{mn}^{\dagger}(\theta, \varphi)M_{mn}(\theta, \varphi).$$

(B2)

The decay amplitudes can be written in terms of Wigner rotation functions

$$M_{1-0}(\theta, \varphi) = \sqrt{\frac{3}{4\pi}} D_{10}^{1}(\varphi, \theta, -\varphi) = -\sqrt{\frac{3}{8\pi}} \sin \theta \ e^{i \phi},$$

$$M_{0-0}(\theta, \varphi) = \sqrt{\frac{3}{4\pi}} D_{00}^{1}(\varphi, \theta, -\varphi) = \sqrt{\frac{3}{4\pi}} \cos \theta,$n

$$M_{-1-0}(\theta, \varphi) = \sqrt{\frac{3}{4\pi}} D_{-10}^{1}(\varphi, \theta, -\varphi) = -\sqrt{\frac{3}{8\pi}} \sin \theta \ e^{-i \phi}.$$

(B3)

As can be checked by explicit comparison, Eq. (B2) can be rewritten as

$$R(\theta, \varphi) = \frac{1}{4\pi} \left[ 1 + 3 \sum_{ij} \left( \frac{1}{3} \delta_{ij} - \hat{p}_{c.m.}^{i}(\theta, \varphi) \hat{p}_{c.m.}^{j}(\theta, \varphi) \right) \right],$$

(B4)

where $\hat{p}_{c.m.}^{i}$ is the flight direction of one of the produced pions.

In general, the decay matrix can be expressed in terms of analyzing powers,

$$R(\theta, \varphi) = \frac{1}{4\pi} \left[ 1 + \frac{3}{2} \sum_{ij} A_{i}(\theta, \varphi) + 3 \sum_{ij} A^{ij}(\theta, \varphi) \right],$$

(B5)

and the decay distribution can be obtained accordingly as

$$W(\theta, \varphi) = \frac{1}{4\pi} \left( 1 + \frac{3}{2} S_{L} A_{+} + 3 T_{ij} A^{ij} \right).$$

(B6)

By comparing Eq. (B4) with Eq. (B5) we can identify

$$A_{+} = 0,$$

$$A^{ij} = \frac{1}{3} \delta^{ij} - \hat{p}_{c.m.}^{i} \hat{p}_{c.m.}^{j}.$$

The tensor analyzing power can be written in a covariant form. By introducing the four-momenta of the two outgoing pions, $P_{1}^{\mu}$ and $P_{2}^{\mu}$, since the two particles are identical, we can make the replacement

$$\hat{p}_{c.m.}^{\mu} \rightarrow \frac{P_{1}^{\mu} - P_{2}^{\mu}}{|P_{1}^{\mu} - P_{2}^{\mu}|} \sqrt{M_{\rho}^{2} - 4M_{p}^{2}}$$

(B7)

and we obtain the covariant expression of the tensor analyzing power:

$$A_{\mu \nu} = \frac{1}{4M_{\pi}^{2} - M_{\rho}^{2}} (P_{1}^{\mu} - P_{2}^{\mu})(P_{1}^{\nu} - P_{2}^{\nu}) - \frac{1}{3} \left( g_{\mu \nu} - \frac{P_{h}^{\mu} P_{h}^{\nu}}{M_{p}^{2}} \right).$$

(B8)

If the polar axis in the decay analysis is chosen along the $\rho$ direction of motion, as it has been done in [6–8], then we can use a parametrization for $A_{ij}$ analogous to that of the spin tensor, Eq. (5), to obtain

$$A_{LL} = -\frac{1}{2} (\cos^{2} \theta + \cos 2 \theta),$$

$$A_{LT} = -\sin 2 \theta \ \cos \varphi,$n

$$A_{TT} = -\sin^{2} \theta \ \cos 2 \varphi,$n

$$A_{TT} = -\sin^{2} \varphi \ \sin 2 \varphi.$$n

(B9)

Substituting the explicit form of the decay matrix in Eq. (B1) or, equivalently, the explicit form of the tensor analyzing power in Eq. (B6), we obtain the decay distribution (cf. [20])

$$W(\theta, \varphi) = \frac{3}{8\pi} \left( \frac{2}{3} - 2 S_{LL} \cos^{2} \theta + 2 \cos 2 \theta \right)$$

$$- S_{LT} \sin 2 \theta \ \cos \varphi - S_{LT}^{2} \sin 2 \theta \ \sin \varphi$$

$$- S_{TT} \sin^{2} \theta \ \cos 2 \varphi - S_{TT}^{2} \sin^{2} \varphi \ \sin 2 \varphi.$$

(B10)

In the case where the polar axis is chosen in the direction of the virtual photon, in order to determine the relevant invariant quantity for $S_{L}$, $S_{LL}$, $S_{LT}$ and $S_{TT}$, we construct the covariant comparison as in Eq. (49), using the relation between $g_{\mu \nu}^{\mu}$ and $g_{\mu \nu}^{\mu}$. It is then easy to find for any hadron (neglecting order $1/Q^{2}$ corrections),

$$S_{L} = \frac{M (S \cdot q)}{P \cdot q},$$

(B11)

$$S_{TT} = S_{TT}^{2} - S_{L} P_{L}^{2} M.$$
\[
\frac{2}{3} S_{LL} = \frac{M^2 (q^\mu p_\rho q^\rho)}{(P \cdot q)^2},
\]
\[
\frac{1}{2} S_{LT}^\mu = \frac{M (g_{\mu \rho} p_\rho q^\nu)}{P \cdot q} - \frac{2}{3} S_{LL} \frac{p_\mu}{M},
\]
\[
\frac{1}{2} S_{TT}^{\mu \nu} = g_{\mu \nu} p_\rho q_\rho - \frac{1}{2} \frac{p_\mu p_\nu}{M} - \frac{2}{3} S_{LL} \frac{p_\mu p_\nu}{M^2},
\]
\[
= g_{\mu \nu} p_\rho q_\rho - \frac{1}{2} \frac{p_\mu p_\nu}{M} + \frac{2}{3} S_{LL} \frac{p_\mu p_\nu}{M^2}.
\]

APPENDIX C: DISTRIBUTION FUNCTIONS

Distribution functions can be defined in terms of projections of the correlation function on specific Dirac structures. Using the notation
\[
\Phi^{[\Gamma]}(x, p_T) = \text{Tr} [\Phi(x, p_T) \Gamma],
\]
\[
\Phi^{[\Gamma]}(x) = \text{Tr} [\Phi(x) \Gamma],
\]
we can list all possible twist-2 projections and consequently define all possible twist-2 distribution functions. In the following formulas distribution functions on the right side are understood to be functions of \( x \) and \( p_T^2 \). Latin indices, \( i, j \) and \( l \), indicate only the two transverse components. Before integration upon \( p_T \) we obtain
\[
\Phi^{[\gamma^+]}(x, p_T) = f_1, \]
\[
\Phi^{[\gamma^+]}(x, p_T) = 0, \]
\[
\Phi^{[\gamma^-]}(x, p_T) = \left( \epsilon_\mu^{\mu \nu} S_{\nu \nu} \frac{p_\nu}{M} f_{1LT} \right), \]
\[
\Phi^{[\gamma^+]}(x, p_T) = S_{LL} f_{1LL}, \]
\[
\Phi^{[\gamma^+]}(x, p_T) = S_{LT} \frac{p_T}{M} f_{1LT}, \]
\[
\Phi^{[\gamma^+]}(x, p_T) = \frac{p_T \cdot S_{TT} \cdot p_T}{M^2} f_{1TT}, \]
\[
\Phi^{[\gamma^+]}(x, p_T) = 0, \]
\[
\Phi^{[\gamma^+]}(x, p_T) = S_L g_{1L}, \]
\[
\Phi^{[\gamma^+]}(x, p_T) = S_T \frac{p_T}{M} g_{1T}, \]
\[
\Phi^{[\gamma^+]}(x, p_T) = 0, \]
\[
\Phi^{[\gamma^+]}(x, p_T) = \left( \epsilon_\mu^{\mu \nu} S_{\nu \nu} \frac{p_\nu}{M} g_{1LT} \right), \]
\[
\Phi^{[\gamma^+]}(x, p_T) = - \left( \epsilon_\mu^{\mu \nu} S_{\nu \nu} \frac{p_\nu}{M} g_{1LT} \right), \]
\[
\Phi^{[\gamma^+]}(x, p_T) = S_{LT} f_{1TT} \]
\[
\Phi^{[\gamma^+]}(x, p_T) = - S_{LT} g_{1T}, \]
\[
\Phi^{[\gamma^+]}(x, p_T) = - S_T g_{1L}, \]
\[
\Phi^{[\gamma^+]}(x, p_T) = - \left( \epsilon_\mu^{\mu \nu} S_{\nu \nu} g_{1LT} \right), \]
\[
\Phi^{[\gamma^+]}(x, p_T) = - \left( \epsilon_\mu^{\mu \nu} S_{\nu \nu} g_{1LT} \right), \]
\[
\Phi^{[\gamma^+]}(x, p_T) = \left( \epsilon_\mu^{\mu \nu} S_{\nu \nu} g_{1LT} \right), \]

After integrating over \( p_T \) the following distribution functions remain:
\[
\Phi^{[\gamma^+]}(x) = f_1(x), \]
\[
\Phi^{[\gamma^+]}(x) = S_{LL} f_{1LL}(x), \]
\[
\Phi^{[\gamma^+]}(x) = S_L g_{1L}(x), \]
\[
\Phi^{[\gamma^+]}(x) = S_T h_{1}(x), \]
\[
\Phi^{[\gamma^+]}(x) = \left( \epsilon_\mu^{\mu \nu} S_{\nu \nu} g_{1LT} \right)(x). \]

The list of \( p_T^2 \)-weighted functions is
\[
\frac{1}{M} (\Phi^{[\gamma^+]}_T)(x) = - \left( \epsilon_\mu^{\mu \nu} S_{\nu \nu} \frac{p_\nu}{M} f_{1LT}(x) \right), \]
\[
\frac{1}{M} (\Phi^{[\gamma^+]}_T)(x) = - S_{LT} f_{1LT}(x), \]
\[
\frac{1}{M} (\Phi^{[\gamma^+]}_T)(x) = - S_T g_{1L}(x), \]
\[
\frac{1}{M} (\Phi^{[\gamma^+]}_T)(x) = - \left( \epsilon_\mu^{\mu \nu} S_{\nu \nu} g_{1LT} \right)(x). \]
These extensions have therefore only transverse components. ~target, while spin tensor components refer to the outgoing hadron whose polarization is measured through its decay expressions.

\[ \frac{1}{M} \langle \Phi^{a}_{\rho} \rangle_{U}^{[\alpha \beta \gamma \delta]}(x) = - \langle e^{\mu}_{\rho} h^{(1)}_{1L}(x) \rangle, \quad (C11) \]

\[ \frac{1}{M} \langle \Phi^{a}_{\rho} \rangle_{TT}^{[\alpha \beta \gamma \delta]}(x) = - \langle e^{\mu}_{\rho} S_{TT} h^{(1)}_{1TT}(x) \rangle. \quad (C14) \]

\[ \frac{1}{M} \langle \Phi^{a}_{\rho} \rangle_{L}^{[\alpha \beta \gamma \delta]}(x) = - S_{L} g_{TT}^{a} h^{(1)}_{1L}(x), \quad (C12) \]

\[ \frac{1}{M} \langle \Phi^{a}_{\rho} \rangle_{LL}^{[\alpha \beta \gamma \delta]}(x) = - (S_{LL} e^{a}_{\rho} h^{(1)}_{1LL}(x)). \quad (C13) \]

The list of fragmentation functions can be obtained by applying the notation replacements \( f \rightarrow D, \quad g \rightarrow G, \quad h \rightarrow H \), and the replacements \( \{ x, p_{T}, S, M, \gamma^{+}, \sigma^{+} \} \) \( \rightarrow \{ z, k_{T}, S_{h}, M_{h}, \gamma^{-}, \sigma^{-} \} \).

**APPENDIX D: HADRONIC TENSOR WITH A TENSOR POLARIZED OUTGOING FRAGMENT**

We give the formulas for the complete hadronic tensor up to leading order in \( 1/Q \) and for different polarization conditions, starting from the expression

\[ 2MW^{\mu \nu} = 2z_{h} \int d^{2}p_{T} \, d^{2}k_{T} \, \eta^{2}(p_{T} + q_{T} - k_{T}) \, Tr[2 \Phi(x_{B}, p_{T}) \gamma^{\mu} \gamma^{\nu} + 2 \Delta(z_{h}, k_{T}) \gamma^{\nu}]. \quad (D1) \]

We limit ourselves to the case where the target is a spin-\( \frac{3}{2} \) hadron and the fragment is a spin-1 hadron (e.g. a \( \rho \) meson whose polarization is measured through its decay) with tensor polarization only. Therefore, spin vector components refer to the target, while spin tensor components refer to the outgoing hadron (we label them with an index \( h \)). When we use the expressions \( S_{h}^{a}_{LL} \) and \( S_{h}^{a}_{TT} \) we mean the extensions to four dimensions of the purely transverse vector \( S_{h}^{a}_{LL} \) and tensor \( S_{h}^{a}_{TT} \). These extensions have therefore only transverse components.

1. Unpolarized target: Tensor polarized fragment

\[ 2MW^{\mu \nu}_{S} = 2z \int d^{2}k_{T} \, d^{2}p_{T} \, \eta^{2}(p_{T} + q_{T} - k_{T}) \left\{ - g_{\mu \nu} \left[ S_{h1LL} f_{1} D_{1LL} + \frac{S_{h1TT} k_{T}}{M_{h}} f_{1} D_{1TT} + \frac{k_{T} \cdot S_{h1TT} k_{T}}{M_{h}^{2}} f_{1} D_{1TT} \right] \right\} \quad (D2) \]

\[ 2MW^{\mu \nu}_{A} = 2z \int d^{2}k_{T} \, d^{2}p_{T} \, \eta^{2}(p_{T} + q_{T} - k_{T}) \left\{ i e^{\mu \nu} \left[ \frac{k_{T} \cdot e_{T} \cdot S_{h1LT}}{M_{h}} f_{1} G_{1LT} + \frac{(k_{T} \cdot e_{T} \cdot (S_{h1TT} \cdot k_{T}))}{M_{h}^{2}} f_{1} G_{1TT} \right] \right\} \quad (D3) \]

2. Longitudinally polarized target: Tensor polarized fragment

\[ 2MW^{\mu \nu}_{S} = 2z \int d^{2}k_{T} \, d^{2}p_{T} \, \eta^{2}(p_{T} + q_{T} - k_{T}) \left\{ - g_{\mu \nu} \left[ \frac{k_{T} \cdot e_{T} \cdot S_{h1LT}}{M_{h}} + \frac{S_{h1LL} k_{T}}{M_{h}} g_{1L} G_{1LT} + \frac{S_{h1LL} S_{h1TT} k_{T}}{M_{h}} g_{1L} G_{1TT} \right] \right\} \]

\[ - \frac{p_{T}^{\mu} e_{T}^{\nu} \gamma_{\mu} \gamma_{T}^{+} + k_{T}^{\mu} e_{T}^{\nu} \gamma_{T}^{+} p_{T}^{\mu}}{2M M_{h}} \left[ S_{h1TT} f_{1} D_{1TT} + \frac{S_{h1TT} k_{T}}{M_{h}} f_{1} D_{1TT} + \frac{k_{T} \cdot S_{h1TT} k_{T}}{M_{h}^{2}} f_{1} D_{1TT} \right] \]

\[ - \frac{p_{T}^{\mu} e_{T}^{\nu} \gamma_{\mu} \gamma_{T}^{+} + S_{h1LT} e_{T}^{\nu} \gamma_{T}^{+} p_{T}^{\mu}}{2M M_{h}} \left[ S_{h1TT} f_{1} D_{1TT} + \frac{p_{T}^{\mu} e_{T}^{\nu} \gamma_{T}^{+} S_{h1TT} \gamma_{\sigma} k_{T}^{\sigma} + k_{T}^{\sigma} S_{h1TT} \sigma e_{T}^{\nu} \gamma_{T}^{+} p_{T}^{\mu}}{2M M_{h}} \right] \]

\[ 2MW^{\mu \nu}_{A} = 2z \int d^{2}k_{T} \, d^{2}p_{T} \, \eta^{2}(p_{T} + q_{T} - k_{T}) \left\{ i e^{\mu \nu} \left[ \frac{k_{T} \cdot S_{h1TT} k_{T}}{M_{h}} g_{1L} G_{1TT} + \frac{S_{h1LT} k_{T}}{M_{h}} g_{1L} D_{1LT} \right] \right\}. \quad (D4) \]
3. Transversely polarized target: Tensor polarized fragment

\[ 2MW_1^{\mu\nu} = 2z \int d^2k_T \, d^2p_T \, \delta^2(p_T + q_T - k_T) \left[ -g_{\perp}^{\mu\nu} \left( \frac{S_T \cdot p_T}{M} + \frac{k_T \cdot p_T}{M} \cdot S_{h_{\perp\perp}} \right) \cdot \frac{1}{g_{\perp}} \left( \frac{S_T \cdot p_T}{M} + \frac{k_T \cdot p_T}{M} \cdot S_{h_{\perp\perp}} \right) \cdot \frac{1}{g_{\perp}} \left( \frac{h_{\perp\perp}}{M} + \frac{h_{\perp\perp}}{M} \cdot k_T \cdot h_{\perp\perp} \right) \right] \]

\[ 2MW_2^{\mu\nu} = 2z \int d^2k_T \, d^2p_T \, \delta^2(p_T + q_T - k_T) \left[ \frac{S_T \cdot p_T}{M} \cdot \frac{S_{h_{\perp\perp}}}{M} \cdot \frac{k_T}{M} \cdot \frac{S_{h_{\perp\perp}}}{M} \cdot \frac{1}{g_{\perp}} \left( \frac{h_{\perp\perp}}{M} + \frac{h_{\perp\perp}}{M} \cdot k_T \cdot h_{\perp\perp} \right) \right] \]

\[ (D6) \]

\[ (D7) \]