4.2 MRI characteristics of clinical subtypes of mild cognitive impairment

Laura A. van de Pol, MD1
Pieter-Jelle Visser, MD, PhD2
Giovanni B. Frisoni MD, PhD3
Magda Tsalaki, MD, PhD4
Ioannis Tsitourides, MD, PhD4
Flavio Nobili, MD, PhD6
Lars-Olof Wahlund MD, PhD7
Lennart Minthon, MD, PhD8
Lutz Fröhlich, MD, PhD9
Harald Hampel, MD, PhD10
Hilkka Soininen, MD, PhD11
Dirk L. Knol, PhD12
Frederik Barkhof, MD, PhD13
Philip Scheltens, MD, PhD13
Frans Verhey, MD, PhD13

1Department of Neurology, Alzheimer Centre, VU Medical Centre, Amsterdam, the Netherlands;
2Department of Psychiatry and Neuropsychology, University of Maastricht, the Netherlands; 3IRCCS San Giovanni, Laboratory of Epidemiology and Neuroimaging, Brescia, Italy; 4Aristotle University of Thessaloniki, Memory and Dementia Centre, 3rd Department of Neurology, G. Papanicolaou General Hospital, Thessaloniki, Greece; 5Papageorgiou Hospital, Department of Radiology, Thessaloniki, Greece; 6Clinical Neuropsychiatry Service, Dept of Endocrinological and Metabolic Sciences, University of Genoa, Genoa, Italy; 7NVS Department, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden; 8Clinic of Neuropsychiatry, Malmö University Hospital, Malmö, Sweden; 9Dept of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit, University of Heidelberg, Mannheim, Germany; 10Alzheimer Memorial Centre and Geriatric Psychiatry Branch, Dementia and Neuroimaging Section Department of Psychiatry, Ludwig-Maximilian University, Munich, Germany; 11University of Kuopio, Department of Neurology, Kuopio University Hospital, Kuopio Finland; 12Department of Clinical Epidemiology and Biostatistics, VU Medical Centre, Amsterdam, the Netherlands.
13Department of Radiology, Alzheimer Centre, VU Medical Centre, Amsterdam, the Netherlands

Submitted
ABSTRACT

Aim
To investigate the degree of medial temporal lobe atrophy (MTA) and white matter hyperintensities (WMH) on MRI, in clinical subtypes of MCI.

Methods
Consecutive non-demented subjects older than 55 years (n = 329) with an average age of 69 ± 8 years (mean ± SD) and MMSE score of 28 ± 2 were recruited from memory clinics of multiple centres. Subjects were categorized into four MCI subtypes: subjects with subjective complaints (n = 77), non-amnestic MCI (n = 93), single-domain amnestic MCI (n = 70), and multiple-domain amnestic MCI (n = 89). MTA was scored using a visual rating scale (range 0-4), and WMH were scored using the Age-Related White Matter Changes scale (range 0-30). Group differences were analysed with analysis of variance, corrected for age, sex and centre.

Results
The degree of MTA differed between the MCI subgroups (p < 0.001), with scores increasing from 0.8 ± 0.7 in subjective complaints, to 1.3 ± 0.8 in non-amnestic MCI, 1.4 ± 0.9 in single-domain amnestic MCI and 1.7 ± 0.9 in multiple-domain amnestic MCI. The association between MCI subgroup and severity of MTA was modified by age, and was mainly present in subjects older than 70 years. The severity of WMH did not differ between the MCI subgroups (p = 0.21). Isolated MTA (without WMH) was more common in multiple-domain amnestic MCI, while MTA in combination with WMH was more common in non-amnestic MCI (p = 0.01).

Conclusion
Clinical MCI subtypes have different brain substrates, especially in older subjects. Isolated MTA was mainly associated with the amnestic subtypes of MCI, suggesting AD as underlying cause. The relatively higher prevalence of MTA in combination with WMH in non-amnestic MCI, may suggest that MTA in non-amnestic MCI may be of vascular origin.
Introduction

Mild cognitive impairment (MCI) refers to non-demented individuals who show a decline in cognitive performance, and is considered to be a risk state for Alzheimer’s disease (AD).\(^1\)\(^2\) However, not all subjects with MCI will develop AD, some will remain stable or even improve over time, whilst others will develop other types of dementia.\(^3\)\(^4\) Clinical subtypes of MCI have been suggested, that are assumed to represent different underlying aetiologies. These subtypes are based on the cognitive domains in which the impairment occurs (amnestic versus non-amnestic), and the number of cognitive domains affected (single versus multiple).\(^3\) The amnestic type of MCI is regarded as a prodromal form of AD, whereas the subtypes with impairment in non-memary domains are assumed to represent prodromal stages of other types of dementia, such as vascular dementia or dementia with Lewy bodies.\(^3\)\(^6\) Preliminary studies have shown that MCI subtypes may indeed represent different disorders.\(^6\)\(^7\)

MRI may provide further evidence for the presumption that clinical MCI subtypes differ in aetiology. Atrophy of the medial temporal lobe (MTA) on MRI is a sensitive diagnostic marker for AD.\(^8\)\(^11\) The presence of MTA in MCI has been shown to be predictive of AD.\(^12\)\(^14\) Recent studies have shown that MTA might be associated with amnestic MCI, but these studies were limited by small sample sizes and overlapping MCI definitions.\(^15\)\(^17\) White matter hyperintensities (WMH), which are generally viewed as evidence of small vessel disease, are commonly observed on MRI across the cognitive spectrum.\(^18\)\(^22\) Clinically, previous studies have suggested that WMH are associated with cognitive deficits, especially in executive function and speed of processing,\(^23\)\(^24\) but little is known about the role of WMH in subtypes of MCI.

In order to provide further support for the idea that the subclassification of MCI may differentiate between various underlying aetiologies, we investigated the prevalence of MTA and WMH across specific clinical MCI subtypes. Subjects were classified into four groups: 1: subjective complaints, 2: non-amnestic MCI, 3: single-domain amnestic MCI, and 4: multiple-domain amnestic MCI, based on neuropsychological test performance. We hypothesized that MTA would be mainly associated with amnestic MCI, whereas WMH might be more involved in non-amnestic MCI. We also investigated whether the prevalence of MTA and WMH in MCI subtypes was dependent on age, educational level and sex, because population-based studies have shown that older age, female sex and low educational level are associated with an increased risk for dementia.\(^25\)
METHODS

Study design
Subjects were selected from the DESCRIPA study, a multi-centre study of the European Alzheimer’s Disease Consortium, aiming to develop clinical criteria and screening guidelines for AD in the predementia stage. Inclusion criteria were: age 55 years or older, new referral for the evaluation of cognitive complaints, no diagnosis of dementia. Exclusion criteria were: any somatic, psychiatric, or neurological disorder that may have caused the cognitive impairment such as a cerebrovascular accident or strategic infarction with an acute onset of the cognitive impairment, neurodegenerative diseases such as Parkinson’s disease, severe head trauma, brain tumor, a history of alcohol abuse, and severe depression. The study closely followed regular clinical practice or was performed as part of a research project. For the present study subjects were selected from 10 centres in which MRI scanning was part of clinical practice or a research project (n = 512). MRI was available for 351 (69%) subjects. Reasons for no MRI included: contra-indication for MRI, patient refusal, poor quality of MRI scan, and avoidance of waiting lists for MRI assessment. Subjects with and without MRI did not differ with respect to demographic characteristics, score on the Mini-Mental State Examination (MMSE), and prevalence of vascular risk factors. Twenty-two subjects who could not be classified as one of the MCI subtypes, because of missing data for one or more neuropsychological tests, were excluded. These subjects scored lower on MMSE (mean ± SD): 25 ± 4 (t = -5.0, df = 346, p < 0.001, MMSE scores were missing for one of these 22 subjects and for two subjects of the final sample), and a lower prevalence of hyperlipidaemia (14%; χ² = 4.8, df = 1, p = 0.03), compared to the rest of the cohort. There were no differences with respect to age, level of education and the prevalence of other vascular risk factors. The final study sample consisted of 329 subjects. The study was approved by the local Medical Ethics Committee in each centre.

Baseline clinical assessment
All subjects underwent a standard battery of examinations, including a clinical history, medical and neurological examination, laboratory tests, functional evaluation using the Clinical Dementia Rating scale (CDR), rating scales for depression and neuropsychiatric symptoms, a neuropsychological test-battery (see below), and neuroimaging. General cognition was assessed using the MMSE. The following vascular risk factors were included in the analyses: hypertension (systolic blood pressure > 140 mmHg or diastolic blood pressure > 90 mmHg or a history of hypertension or use of antihypertensive medication), a history of diabetes mellitus, hyperlipidaemia, and atherosclerosis (a history of ischemic heart disease or carotid stenosis or transient ischemic attack in the past).
Neuropsychological examination
In each centre a battery of neuropsychological tests was performed to assess cognitive performance in the domains of memory, language, executive function and attention, and visuoconstruction. The tests used to assess each domain could vary between centres. Raw scores were converted to age, education, and gender corrected z-scores according to locally collected normative data or published normative data and these z-scores were used for further analysis.

Definition of MCI subtypes
Subjects were classified into four MCI subtypes on the basis of the performance on tests in the cognitive domains of memory, language, executive function and attention, and visuoconstruction as described below. Subjects without impairment in any domain were classified as subjective complaints, subjects with impairment in one or more non-memory domains as non-amnestic MCI, subjects with isolated impairment in the memory domain as single-domain amnestic MCI, and subjects with impairment in the memory domain and at least one other domain as multiple-domain amnestic MCI. Impairment was defined as a z-score of -1.5 or lower, which equals a score of 1.5 standard deviation below the average score of healthy control subjects after correction for age, sex, and education.

Due to variability in the neuropsychological test protocol, the tests used to define MCI subtypes varied between centres. We selected in each centre one test for each domain, that was identical or similar to tests used in other centres. The tests to assess memory were the learning measure and delayed recall measure of the Rey Auditory Verbal Learning Test (6 centres),28 the word list of the Consortium to Establish a Registry for AD (CERAD) neuropsychological battery (3 centres),29 and the Selective Reminding Test (1 centre).30 The tests to assess language were 1-minute verbal fluency for animals (9 centres), and 1-minute verbal fluency for fruits, animals or car trades (1 centre).31 The test to assess executive function and attention was the Trail Making Test part A and B (TMT A and B, all centres).32 The tests to assess visuoconstruction were the copy subtest of the Rey-Osterrieth complex figure (6 centres),33 the copy of the CERAD figures (3 centres),29 or the copy of figures from the BMDS (1 centre).34

Thirty-two subjects classified as non-amnestic MCI (34% of all subjects in this subgroup) had impairments in more than one non-memory domain, and could be considered to have multiple-domain non-amnestic MCI. Post-hoc analyses showed no statistically significant differences with regard to MRI characteristics between subjects with single-, and multiple-domain non-amnestic MCI, and therefore we analysed the data of subjects with non-amnestic MCI as a single group.
MRI acquisition
All subjects were studied by MRI within 0.1 ± 0.2 (mean ± SD) years of the baseline clinical assessment. At each site subjects were scanned according to the routine MRI protocol, consequently the scanners and protocols at different sites varied. All scanning was performed at 1.0 or 1.5T and included a 3D T1-weighted gradient-echo sequence and a fast fluid attenuated inversion recovery (FLAIR) sequence. MRI data were collected and analysed centrally. Sagital 3D T1-weighted images were reformatted in a plane perpendicular to the long axis of the (left) hippocampus (at a slice thickness of 2mm).

Visual rating of MTA and WMH
MTA was rated on coronal T1-weighted images using a five point visual rating scale, ranging from 0 (no atrophy) to 4 (severe atrophy) based on the height of the hippocampal formation and the surrounding cerebrospinal fluid spaces. In the analysis, the average score of left and right was used, as well as the dichotomized score (MTA ≥ 2 = atrophy). The degree of WMH severity was rated on the axial FLAIR images using the Age-Related White Matter Changes scale (ARWMC). Here, we used the total degree of WMH (range 0-30) by adding the region-specific scores of both hemispheres, and a dichotomised score (ARWMC > 5 = moderate WMH). All visual ratings were carried out centrally by a single rater (LvdP) who was blinded to clinical information. The intra-rater agreement for the MTA scale was good (kappa 0.68) as well as the intra-rater agreement for the ARWMC scale as determined on a testset of 20 MR scans scored twice (weighted kappa: 0.95).

Statistics
SPSS for Windows, version 12.0 (Chicago, IL) was used for data analysis. Characteristics of subjects in the present study sample were compared to characteristics of excluded subjects without MRI and missing neuropsychological data using Student’s t-tests or χ²-tests when appropriate. Subsequently, group differences between the MCI subtypes were assessed using analysis of variance (ANOVA), or logistic regression models for dichotomous outcome variables. Age and sex were used as covariates, and centre of origin as a categorical covariate. Bonferroni correction was used to adjust for multiple comparisons in the post-hoc pair-wise comparisons.

Finally, both MRI measures were dichotomised (MTA score 0-1 and ≥ 2; ARWMC score 0-5 and ≥ 6). Using both dichotomised measures we computed a new MTA-WMH variable, yielding four groups: 1: MTA and WMH absent; 2: MTA absent, WMH present; 3: MTA present, WMH absent; 4: MTA and WMH present. The
difference in distribution of subjects over the MTA-WMH groups across MCI subtypes was assessed using multinomial logistic regression analysis with MTA-WMH group as dependent variable and MCI subtype as a predictor, adjusting for age.

RESULTS

Table 1 shows the baseline characteristics for the total study sample and for the four MCI subtypes. Age ($F_{[3,314]} = 6.3, p < 0.0001$), sex ($\chi^2 = 36.1, df = 13, p = 0.003$), years of education ($F_{[3,314]} = 3.1, p = 0.03$) and MMSE scores ($F_{[3,312]} = 9.9, p < 0.0001$) were significantly different between the groups. There were no differences in the prevalence of vascular risk factors across the MCI subtypes.

Severity of MTA differed across the MCI subtypes ($F_{[3,314]} = 11.0, p < 0.001$). Pairwise comparisons showed that subjects with subjective complaints had less severe MTA than subjects with non-amnestic MCI ($p = 0.047$), single-domain amnestic MCI ($p = 0.005$), and multiple-domain amnestic MCI ($p < 0.0001$), and that subjects with non-amnestic MCI had less severe MTA compared to subjects with multiple-domain amnestic MCI ($p = 0.006$). The presence of medial temporal lobe atrophy (MTA ≥ 2), increased from 14% of subjects with subjective complaints, to 38% of subjects with non-amnestic MCI, 44% in subjects with single-domain amnestic MCI and 55% in subjects with multiple-domain amnestic MCI (post-hoc pairwise comparisons: subjective complaints versus all other subtypes ($p < 0.01$)). In contrast, the total ARWMC score, and the proportion of subjects with at least moderate WMH (ARWMC score > 5), did not differ across the MCI subtypes.

Correction of the analyses for level of education and vascular risk factors did not essentially change the results (data not shown).

The association between the MTA score and MCI subtype was modified by age, as indicated by a significant interaction between age (dichotomized at 70 years) and subtype ($p = 0.03$). Post-hoc analysis showed that in older subjects MTA score was strongly associated with MCI subtype ($F_{[3,139]} = 10.1, p < 0.0001$), in contrast with a weaker association in younger subjects ($F_{[3,100]} = 3.4, p = 0.02$, figure 1).

No significant interaction between MCI subtype and age group in association with WMH was present, nor were there any interactions for gender or level of education and MCI subtype in association with severity of MTA or WMH.
Table 1 Baseline characteristics in total sample and according to four MCI subtypes

<table>
<thead>
<tr>
<th></th>
<th>Total sample</th>
<th>Subjective complaints</th>
<th>Non-amnestic MCI</th>
<th>Amnestic MCI</th>
<th>Overall p-value</th>
<th>Group comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=329)</td>
<td>(n=77)</td>
<td>(n=98)</td>
<td>(n=70)</td>
<td>(n=89)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group 1</td>
<td>Group 2</td>
<td>Group 3</td>
<td>Group 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>69 (8)</td>
<td>66 (7)</td>
<td>70 (8)</td>
<td>69 (8)</td>
<td>71 (8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sex, n (%) female</td>
<td>188 (57)</td>
<td>39 (51)</td>
<td>64 (69)</td>
<td>31 (44)</td>
<td>54 (61)</td>
<td>0.003</td>
</tr>
<tr>
<td>Education, years</td>
<td>10 (4)</td>
<td>11 (4)</td>
<td>8 (4)</td>
<td>12 (4)</td>
<td>9 (4)</td>
<td>0.03</td>
</tr>
<tr>
<td>MMSE</td>
<td>28 (2)</td>
<td>28 (2)</td>
<td>28 (2)</td>
<td>28 (2)</td>
<td>27 (2)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Vascular risk factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>216 (66)</td>
<td>48 (63)</td>
<td>62 (67)</td>
<td>45 (65)</td>
<td>61 (69)</td>
<td>0.95</td>
</tr>
<tr>
<td>Diabetes Mellitus, n (%)</td>
<td>38 (12)</td>
<td>7 (9)</td>
<td>12 (13)</td>
<td>4 (6)</td>
<td>15 (17)</td>
<td>0.28</td>
</tr>
<tr>
<td>Hyperlipidaemia, n (%)</td>
<td>122 (38)</td>
<td>21 (26)</td>
<td>36 (40)</td>
<td>27 (40)</td>
<td>38 (44)</td>
<td>0.30</td>
</tr>
<tr>
<td>Atherosclerosis, n (%)</td>
<td>45 (15)</td>
<td>8 (11)</td>
<td>13 (15)</td>
<td>12 (18)</td>
<td>12 (15)</td>
<td>0.45</td>
</tr>
<tr>
<td>MRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTA score</td>
<td>1.3 (0.9)</td>
<td>0.8 (0.7)</td>
<td>1.3 (0.8)</td>
<td>1.4 (0.9)</td>
<td>1.7 (0.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>MTA present, n (%)</td>
<td>126 (38)</td>
<td>11 (14)</td>
<td>35 (38)</td>
<td>31 (44)</td>
<td>49 (55)</td>
<td><0.001</td>
</tr>
<tr>
<td>WMH</td>
<td>4.8 (4.9)</td>
<td>3.8 (3.5)</td>
<td>5.3 (5.0)</td>
<td>4.5 (4.5)</td>
<td>5.3 (5.9)</td>
<td>0.21</td>
</tr>
<tr>
<td>Moderate WMH, n (%)</td>
<td>105 (32)</td>
<td>20 (26)</td>
<td>36 (34)</td>
<td>22 (31)</td>
<td>27 (30)</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Values are expressed as mean (standard deviation) unless stated otherwise. ANOVAs or logistic regression models for dichotomous outcome variables with age, sex and center of origin as covariates were performed. Bonferroni correction was used to correct for multiple comparisons. Abbreviations: MMSE: Mini-Mental State Examination (0-30); MTA: medial temporal lobe atrophy; WMH: white matter hyperintensities (0-30); MTA present: score ≥ 2; WMH moderate score > 5.
The distribution of four MRI categories, based on the dichotomized scores of MTA (0-1 versus ≥ 2) and WMH (0-5 versus ≥ 6), over the MCI subtypes is shown in figure 2. A multinomial logistic regression model, adjusted for age, showed that the distribution of subjects over the four MRI categories differed between the four MCI subtypes (overall: $\chi^2 = 25.7$ df = 9, $p = 0.002$, Nagelkerke’s $R^2 = 0.30$). Pair-wise comparisons showed that the distribution of subjects over the four MRI categories differed between subjects with subjective complaints and the amnestic MCI subtypes (p = 0.023 for single-domain amnestic MCI and p = 0.002 for multiple-domain amnestic MCI) and between non-amnestic MCI and multiple-domain amnestic MCI (p = 0.015). In more detail: in multiple-domain amnestic MCI a greater proportion of subjects had isolated MTA, versus MTA in combination with WMH compared to subjects with non-amnestic MCI (p = 0.011). Subjects with subjective complaints had a greater proportion of subjects with isolated WMH versus isolated MTA compared to multiple-domain amnestic MCI (p = 0.002). Finally, the proportion of subjects without any MRI abnormality compared to isolated MTA was greater in subjective complaints compared to both types of amnestic MCI (p = 0.004 and p < 0.0001 respectively), and in non-amnestic MCI versus multiple-domain amnestic MCI (p = 0.003).
Discussion

We provide evidence that the clinical subtypes of MCI, based on neuropsychological profiles, have different brain substrates. Both single- and multiple-domain amnestic MCI were associated with more severe MTA in comparison to subjects with subjective complaints. This is in keeping with previous studies demonstrating atrophy of the medial temporal lobe in subjects with amnestic MCI, and may be associated with an increased risk of development of AD. However, MTA was not restricted to amnestic MCI, as a substantial part of subjects with non-amnestic MCI showed MTA as well. This is in line with previous longitudinal studies that have shown that a proportion of subjects with non-amnestic MCI progresses to clinical AD. Alternatively, MTA in non-amnestic MCI may have a different aetiology and relate to vascular causes.

Studies comparing the extent of MTA across MCI subtypes are scarce and generally had a small sample size. Our findings are in keeping with a study demonstrating that subjects with amnestic MCI had a higher prevalence of MTA than subjects with non-amnestic MCI. Two other studies showed focal atrophy of the medial temporal...
lobe, including the hippocampus, in subjects with amnestic MCI in contrast to subjects with multiple-domain MCI, which was associated with a more diffuse pattern of cortical atrophy. It is difficult to compare our results directly, since these studies used different MRI techniques. In addition, the multiple-domain MCI subtype in these studies included both subjects with impairment in multiple non-memory domains and in both memory and non-memory domains. Our study shows that the classification of subjects with and without memory impairment into one subtype is likely to result in a heterogeneous group.

The differences in MTA observed across the MCI subtypes were largely attributable to subjects aged over 70 years, suggesting that the concept of MCI subtypes may be less useful in younger subjects. Our observation may be explained by the fact that the prevalence of dementia strongly increases with age, and that in subjects with MCI the risk for developing dementia over a 10-year interval is strongly dependent on age.

WMH have been reported to be associated with executive function in MCI, and control subjects. Therefore we hypothesized that WMH might be associated with non-amnestic MCI. However, we could not demonstrate a direct association between the severity of WMH and any of the MCI subtypes. The prevalence of vascular risk factors did not differ across the MCI subtypes also. The absence of controls subjects did not allow us to compare the prevalence of WMH to a normal population. The fact that in the present study subjects were recruited from memory clinics and that subjects with a history of stroke were excluded from the study, may have lead to an under-representation of subjects with significant small vessel disease in the present cohort.

Although MCI subtypes were similar with regard to WMH severity, differences between combined involvement of MTA and WMH were observed (figure 2). The higher prevalence of MTA in the amnestic MCI subtypes compared to the other subtypes was mainly because isolated MTA was more common in amnestic MCI. This provides further evidence that AD is the underlying cause in most amnestic MCI patients. In non-amnestic MCI isolated MTA was relatively rare as most subjects with MTA also had WMH. This suggests that MTA in these subjects may be of vascular origin. Microvascular pathology or vascular lesions in the cortico-subcortical pathways leading to secondary neuronal loss are possible vascular mechanisms associated with MTA.

The group of subjects with subjective complaints has received relatively little attention in previous studies so far, and the clinical outcome of these subjects still remains
In our study the majority of subjects categorized as subjective complaints showed no or few abnormalities on MRI, suggesting that these subjects are in the earliest stages of a neurodegenerative disease or that other factors underlie the complaints.

The cross-sectional design of our study limits interpretation about causal mechanisms underlying MRI measures and MCI subtypes. Another limitation may be the fact that neuropsychological test batteries differed across the various sites, although this difference may in part be accounted for by correcting for centre in the analyses. Among the strengths of this study is the large sample size of MCI subjects with available MRI scans. All scans were analyzed centrally, which reduced the variability of MRI measures to a large extent. Another strength of this study is its clinical setting, which makes the results relevant for clinical practice.

In conclusion, these data provide evidence for differences in neuropathological substrates among clinical subtypes of MCI, especially in older subjects. However, the observed differences were small and clearly an overlap of MRI profiles between the MCI subtypes existed. Further longitudinal analysis is needed to reveal the clinical outcome of MCI subtypes in relation to MRI measures, which is important with respect to preventive and possible early therapeutic interventions in MCI.
REFERENCES

4.2

Osterietti PA. Le test de copie d’une figure complexe: Contribution a l’étude de la perception et de la memoire (The test of copying a complex figure: A contribution to the study of perception and memory). Archivio de Psicologia 1944;30:286-300.

Osterietti PA. Le test de copie d’une figure complexe: Contribution a l’étude de la perception et de la memoire (The test of copying a complex figure: A contribution to the study of perception and memory). Archivio de Psicologia. 1944;30:286-300.

