Verwondering is het begin van wijsheid.

(Socrates)
Genetic variation of innate immune response genes in invasive pneumococcal and meningococcal disease applied to the pathogenesis of meningitis

Gijs Th. J. van Well*, Marieke S. Sanders*, Sander Ouburg, Servaas A. Morré, A. Marceline van Furth

(Genes and Immunity 2011;12(5): 321-34)

* authors attributed equally to this paper
ABSTRACT

The susceptibility, severity and prognosis of infectious diseases depend on the ability of the host immune system to respond to pathogens. Genetic variation of immune response genes is associated with susceptibility to and severity of infectious diseases.

Bacterial meningitis (BM) is a serious and life-threatening infectious disease of the central nervous system (CNS). Despite adequate antibiotic treatment and immunization strategies, mortality remains high, especially in developing countries. *Streptococcus pneumoniae* and *Neisseria meningitidis* are the two most common causative microorganisms of BM worldwide.

The pathogenesis of BM starts with mucosal bacterial colonization, followed by invasion and survival of bacteria in the bloodstream, crossing of the blood–brain barrier, finally causing infection in the CNS, where host defense is less adequate. Host defense to BM starts with a complex cascade of pathogen recognition and subsequent intracellular signaling causing transcription of genes leading to the production of inflammatory mediators. Although this immune reaction is essential for killing microbes, it is also associated with damage to healthy cells and thus adverse disease outcome.

This review provides an overview of the pathogenesis of invasive pneumococcal disease and invasive meningococcal disease related to the influence of genetic variation in genes involved in innate immunity, focusing on BM.
INTRODUCTION

Bacterial meningitis (BM) is a life-threatening infectious disease of the central nervous system (CNS) accounting for an estimated annual 170 000 deaths worldwide. Despite the availability of antibiotics, universal immunization strategies, and continuing improvement of supportive care, mortality remains 4 to 10% in children in industrialized countries and is even higher in the developing world [1]. The overall incidence of meningitis in developed countries is about 2 to 10 cases per 100 000 people per year. In neonates, the attack rate is about 400 per 100 000, in children between 1 month and 2 years of age the attack rate is 20 per 100 000 and in adults 1 to 2 per 100 000 [2]. The most common pathogens causing BM beyond the neonatal period worldwide are *Streptococcus pneumoniae* (SP, 53%) and *Neisseria meningitidis* (NM, 19%) [2,3]. Survivors of BM have a high risk to develop neurological sequelae, ranging from subtle learning and behavioral disorders in over 20% of cases, to deafness, paresis and severe encephalopathy in 10–15% [2,4,5].

Bacterial infections of the CNS are very often preceded by bacteremia [6]. The clinical course of BM depends on the causative microorganism, the mode of acquisition and the immunological response of the affected patient. An acquired pathogen may lead to bacterial colonization but may also result in meningitis with severe neurological sequelae. For example, genetically determined host–bacteria interactions determine the immune response in case of severe meningococcal disease (MD), defined as sepsis and/or meningitis [7,8]. For several infectious diseases it is known that genetic variation determines susceptibility to develop disease on acquisition of a certain pathogen [9]. Defects of the innate immune system, affecting host susceptibility, have been described in both pneumococcal and meningococcal infections within families [10]. Single-nucleotide polymorphisms (SNPs) in immune response genes have been shown to be involved in the susceptibility, severity and outcome of severe infections, including BM [11-13]. Several SNPs are associated with susceptibility to invasive pneumococcal disease (IPD) and invasive meningococcal disease (IMD) [10,14]. For SP, associations are described with genetic variation in genes involved in intracellular innate immune cell signaling and complement. For NM, convincing association with genetic variation has been found in cell-surface molecule genes, surfactant protein (SP) genes, complement genes and cytokine genes [10].

We found no papers that exclusively studied the role of SNPs in the development of BM. We recently published a paper on the role of Toll-like receptor (TLR) 9 SNPs affecting susceptibility to meningococcal meningitis (MM) [12].

Here, we summarize studies that describe associations with SNPs in large cohorts of patients with IPD and IMD, including those with BM. The proportion of BM patients in these cohorts was approximately 10%. For this review, we focus on the
essential steps in the development of BM: epithelial colonization and disruption, infection of the bloodstream, crossing the endothelial blood–brain barrier (BBB) and finally infection of the CNS. We review how genetic variation is involved in pathogen acquisition and epithelial interactions, mechanisms that predispose for bloodstream infection and how genetic variation affects pathogen recognition and the subsequent inflammatory response, both in the bloodstream and inside the CNS.

In concordance with a recent systematic review on IPD and IMD, we will summarize studies on genes involved in adhesion to epithelial surfaces, pathogen recognition, complement and cytokines.

PATHOGENESIS OF BACTERIAL MENINGITIS

The sequential steps in the pathogenesis of BM from the pathogen’s perspective are: (1) nasopharyngeal colonization with bacteria that have the potential to cause BM; (2) epithelial disruption by bacterial components, enabling these bacteria to enter the bloodstream where they replicate and cause bacteremia [15,16]; (3) pathogen specific passage of the BBB and bacterial multiplication inside the subarachnoidal space; (4) bacterial recognition inside the CNS by microglia and astrocytes and by non-neural structures in direct contact with the cerebrospinal fluid (CSF), such as dendritic cells and macrophages, all expressing pathogen recognition receptors (PRRs) including TLRs and nucleotide-binding oligomerization domain (NOD) proteins. PRR activation triggers an intracellular signaling cascade resulting in (5) the transcription of pro-inflammatory cytokines and chemokines inside the CNS. Cytokine induced increased permeability of the BBB and chemokine induced influx of inflammatory cells from the bloodstream into the CNS result in enhancement of the local inflammatory response inside the brain. The clinical consequence is brain edema, raised intracranial pressure, infarction and neuronal injury [6]. The ability of a host to sense CNS invasion by microbes and to respond appropriately to control the local infection is essential for killing microbes but the inflammatory response also results in the production of several cytotoxic mediators responsible for damage to healthy neuronal cells and thus for adverse disease outcome [6]. Figure 1 summarizes the pathogenesis of BM for SP (a) and NM (b).

Next, we will discuss the various steps in the pathogenesis of BM in more detail and discuss the SNPs in genes involved in each of these steps.

Nasopharyngeal colonization and mucosal invasion

Nasopharyngeal colonization precedes invasion but identifiable disease occurs only in a small percentage of persons who are colonized. SP and NM are common inhabit-
ants of the nasopharyngeal cavity but are also capable of causing invasive disease such as meningitis [15,16]. Nasopharyngeal colonization of SP and NM is possible because of their ability to inactivate the host’s local antibody defense by producing immunoglobulin A proteases, which inactivate neutralizing immunoglobulin A antibodies in the epithelial cells [2]. Conversion of asymptomatic colonization to invasive disease may be enhanced by local generation of inflammatory factors, as seen in the presence of viral infections [17].

Surfactant protein (Sp)-A and Sp-D are also implied in the first line of defense against nasopharyngeal and respiratory colonization [18,19]. Sp-A and Sp-D belong to a family of proteins called collectins. They act as pattern recognition molecules and activate phagocytosis and inflammation on binding of bacterial capsular sugars.

SP is a Gram-positive coccus and a prototypic extracellular bacterial pathogen. The external polysaccharide capsule determines the antigenic differences and > 90 serotypes have been described. The pneumococcal cell wall consists of peptidoglycan and lipoteichoic acid (LTA), which are of particular importance in SP virulence. The capsule prevents entrapment in the nasopharyngeal mucus and also inhibits effective opsonophagocytosis. Pneumococcal enzymes, such as neuraminidases (NanA and B), cleave glycoproteins and oligosaccharides and enhance colonization by decreasing the viscosity of the mucus [18,20]. Pneumococcal immunoglobulin A1 protease supports nasopharyngeal colonization by inactivating human secretory immunoglobulin A and promotes attachment to host cells [21]. Phosphorylcholine (ChoP) is an adhesin on the pneumococcal surface that mediates adherence to the receptor for platelet activating factor and activates host cell signaling [22]. The ability to invade the mucosa correlates with the presence of the polymeric immunoglobulin receptor on the human mucosal cell surface and choline-binding protein (CbpA) on the pneumococcus [23]. This binding facilitates transcytosis and enhances bacterial traversal of the mucosa. Another important property of the pneumococcus is autolysis, which is essential for pneumolysin release. Pneumolysin, a pore-forming toxin common for all SP serotypes, is thought to be a multi-effective virulence factor following pneumococcal infection. Its role in mucosal colonization and BM remains contradictory [24]. Pneumococcal colonization and mucosal invasion are summarized in Figure 1a.

Although variable, carriage of SP shows an increase before the age of 2 years and the peak incidence of colonization is 55% at the age of 3 years [15]. Colonization rates decline to < 10% in adults [22] and increase during respiratory infections to 22–45%, which might implicate greater adherence during (viral) infections [15]. Carriage is mostly asymptomatic, can be simultaneous and serial by multiple strains and lasts for a few weeks to a few months. Nasopharyngeal carriage shows quite similar
Figure 1. Schematic representation of the sequential steps in the pathogenesis of pneumococcal and meningococcal meningitis.
(a) Schematic representation of the sequential steps in the pathogenesis of pneumococcal meningitis.

(1) Colonization: the pneumococcal polysaccharide capsule prevents entrapment in the mucus and inhibits phagocytosis. Pneumococcal neuraminidases (NanA and B) cleave glycoproteins and oligosaccharides in mucus enhancing colonization by decreasing the viscosity. Pneumococcal immunoglobulin A (IgA) protease inactivates local secretory IgA and further facilitates colonization. Phosphorylcholine (ChoP) on the pneumococcal surface binds to the receptor for platelet-activating factor (rPAF) and activates cell signaling. Mucosal invasion is facilitated by pneumococcal choline-binding proteins (CbpA) to the immunoglobulin receptor (IgR). SP then traverses the mucosa by transcytosis.

(2) Intravascular bacterial survival and multiplication. Pneumococcal ChoP binds to C-reactive protein (CRP) and enhances complement activation. Pneumococcal surface proteins PspA and PspC inhibit complement activation by interfering binding of SP to complement factor C3 and H, respectively.

(3) Attachment of BMECs by pneumococcal binding surface proteins (CbpA) to the laminin receptor protein (LRP) and, ChoP to rPAF followed by transcellular live bacterial traversal of the BBB.

(4) Bacterial invasion of the meninges and replication in the CNS. LytA is responsible for autolysis and release of subcapsular components, recognized by immunocompetent cells that trigger cytokine and chemokine production leading to increased BBB permeability and pleocytosis, in turn enhancing the local inflammatory response with subsequent increased intracranial pressure and edema, ultimately resulting in neuronal injury.

(b) Schematic representation of the sequential steps in the pathogenesis of MM.

(1) Colonization: the polysaccharide capsule enables attachment to nasopharyngeal mucosal cells of outer membrane proteins and pili with carcinoembryonic antigen cell adhesion molecules (CEACAMs). Capsular saccharides bind to collectins, and inactivate IgA by protease. Bacteria then cross the mucosa by transcytosis or probably through phagocytosis in a ‘Trojan horse’ manner.

(2) Intravascular bacterial survival and multiplication; lipooligosaccharide (LOS) contribute to a high-degree of bacteremia, and complement activation.

(3) Attachment of BMECs by bacterial pili to CD46, opacity-associated adhesion protein (Op) binding to fibronectin, and PorA and PilQ binding to laminin receptor protein (LRP). Attachment of these bacterial epitopes contribute to live bacterial transversal of the BBB by endocytosis or transcytosis after disorganizing the cell polarity via binding to type IV pili.

(4) Bacterial invasion of the meninges and replication in the CNS triggered by the production of cytokines and chemokines by immunocompetent cells leading to increased BBB permeability and pleocytosis, in turn enhancing the local inflammatory response with subsequent increased intracranial pressure and edema, ultimately resulting in neuronal injury.

Serotype distributions in Europe and the United States. The serotypes 6B, 14, 19F and 23F are the most common causative types in BM [15].

NM is a Gram-negative bacterium. Most meningococci express a polysaccharide capsule, the basis of the serogroup typing system [25]. Virulence determinants include the polysaccharide capsule, outer membrane proteins including pili, porin A and B (PorA and B), opacity-associated adhesion protein (Op), iron sequestration mechanisms and endotoxin [26]. Adhesion to epithelial surfaces is a crucial step in meningococcal acquisition. NM attaches to the mucosa by pili. Human carcinoembryonic antigen cell adhesion molecules (CEACAMs), also known as CD66, are cell-surface molecules in nasopharyngeal epithelial cells and neutrophils that
interact with Op type a (Opa) of NM [27]. Upregulation of CEACAM expression in vitro leads to increased uptake of meningococci [28]. Besides transcytosis, [29,30] NM can cross the epithelium directly following damage to the monolayer integrity [29]. It has recently been suggested that pairing of Opa and CEACAMs results in cellular infiltration by bacteria, which are carried across epithelial and endothelial barriers inside phagocytic cells as a Trojan-horse [16,17]. Although the vasculature is considered the primary route to the brain, NM has recently shown to be able to pass directly from nasopharynx to the meninges via the olfactory nerve [31]. Meningococcal colonization and mucosal invasion are summarized in Figure 1b.

NM colonizes 8–25% of healthy individuals [26]. In approximately 25% of individuals, meningococcal acquisition in the upper respiratory tract results in prolonged carriage during several months. In 35% of individuals carriage is brief (days or weeks) and in the remaining 40% carriage is transient or infrequent [32]. Carriage is less frequent in children under the age of 10 (< 3%) than in adults (approximately 10%) and highest in adolescents (7–37%) [26]. Colonization is an important immunizing process, because bactericidal antibodies are acquired through meningococcal carriage. Otherwise, colonization is also a prerequisite for invasive disease [32]. Strains of NM can be divided in 13 serogroups; invasive meningococcal isolates most often express capsules of serogroups A, B, C, Y and sometimes W-135 [26]. Epidemiological studies have revealed that only around 50% of colonizing meningococci express a capsule, while those of patients are almost always encapsulated [33].

Single nucleotide polymorphisms in genes involved in adhesion to epithelial surfaces

No SNPs have been reported in genes involved in adhesion to epithelial surfaces in relation to SP infection, in contrast to NM infections.

Genetic diversity in the CEACAM genes influences the affinity of epithelial cells to adhere to epitopes of the meningococcus. Dose-dependent associations of three CEACAM haplotypes with MD were observed. The effect of carrying these haplotypes is amplified in homozygous individuals. Two haplotypes (in CEACAM3 and CEACAM6) were protective while another haplotype in CEACAM6 was associated with a twofold increase in disease susceptibility [34].

A SNP resulting in the substitution of glutamine with lysine at residue 223 in the carbohydrate recognition domain of Sp-A2 increases susceptibility to MD, as well as the risk of death [18].

Table 1 summarizes the clinical relevant SNPs affecting epithelial adhesion, predisposing to MM.
<table>
<thead>
<tr>
<th>Gene</th>
<th>SNPs</th>
<th>Pneumococcal disease</th>
<th>Meningococcal disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cases/controls</td>
<td>Effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ProMD</td>
<td>SuIPD</td>
</tr>
<tr>
<td>Epithelial adhesion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CEACAM3 | _ | 384/190 | ProMD | 0.52 (0.35-0.75) | UK (white) | 34
| | Haplotype C | | | | |
| CEACAM6 | _ | 384/190 | ProMD | 0.29 (0.14-0.61) | UK (white) | 34
| | Haplotype B | | | | |
| | Haplotype C | | | | |
| SP-A2 | _ | 303/222 | SuMD | 2.01 (1.13-3.6) | UK (white) | 34
| | +6319 C>G (rs165234) | | | | |
| Complement | | | | |
| MBL2 | +154 C>T (rs5030737) | 229/353 | SuPD | 0.016 | 6.7 (1.4-31.5) | UK | 18
| | +161 G>A (rs1800450) | 140/250 | SuPD | 0.016 | 6.7 (1.4-31.5) | UK | 18
| | +170 G>A (rs1800451) | 63/162 | SuPD | 0.016 | 6.7 (1.4-31.5) | UK | 18
| CFD | _ | 380/190 | ProMD | 0.52 (0.35-0.75) | UK (white) | 34
| | +638 T>G (rs34337649) | | | | |

SNPs in immune response genes in BM
<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>Phase</th>
<th>Case report</th>
<th>SuMD</th>
<th>95% CI</th>
<th>Population</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFH</td>
<td>+640 T>C (rs11558092)</td>
<td></td>
<td>Case report</td>
<td>SuMD</td>
<td>0.001</td>
<td>Turkey</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>-496 C>T (rs3753394)</td>
<td>SuMD</td>
<td>2.0 (1.3-3.2)</td>
<td></td>
<td></td>
<td>UK (white)</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>rs10489456</td>
<td>SuMM</td>
<td>1.7 x 10^-6</td>
<td>0.67</td>
<td>(0.59-0.76)</td>
<td>Europe (mixed)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>rs11799395</td>
<td>SuMD</td>
<td>1.4 x 10^-10</td>
<td>0.66</td>
<td>(0.58-0.75)</td>
<td>Europe (mixed)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>rs1268525</td>
<td>SuMD</td>
<td>2.5 x 10^-10</td>
<td>0.66</td>
<td>(0.58-0.75)</td>
<td>Europe (mixed)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>rs1065489</td>
<td>SuMD</td>
<td>2.2 x 10^-11</td>
<td>0.64</td>
<td>(0.56-0.73)</td>
<td>Europe (mixed)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>rs11582939</td>
<td>SuMD</td>
<td>3.7 x 10^-10</td>
<td>0.66</td>
<td>(0.58-0.75)</td>
<td>Europe (mixed)</td>
<td>14</td>
</tr>
</tbody>
</table>

Pathogen recognition

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNPs</th>
<th>Case reports</th>
<th>SuPD</th>
<th>95% CI</th>
<th>Population</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRAK4</td>
<td>5</td>
<td>Case reports</td>
<td>SuPD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEMO</td>
<td>6</td>
<td>Case reports</td>
<td>SuPD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLR4</td>
<td>+596 A>G (rs4986790)</td>
<td>ProPD</td>
<td><0.05</td>
<td>0.3 (0.1-1)</td>
<td>Australia</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>85409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rare coding variants

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>SuMD</th>
<th>95% CI</th>
<th>Population</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK (white)</td>
<td>197/238</td>
<td>0.02</td>
<td>8.2 (NA)</td>
<td>SuMD</td>
<td>2 x 10^-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK, The Netherlands US (white)</td>
<td>230/421</td>
<td>2.40</td>
<td>(NA)</td>
<td>SuMD</td>
<td>2 x 10^-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>SNP</td>
<td>Effect</td>
<td>Clustering</td>
<td>Minor Allele</td>
<td>Odds Ratio</td>
<td>95% CI</td>
<td>Location</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>CD14</td>
<td>-260 C>T</td>
<td>SuPD</td>
<td>0.05</td>
<td>1.7 (1-2.8)</td>
<td>Australia</td>
<td>91</td>
<td>-260 C>T</td>
</tr>
<tr>
<td>CD14</td>
<td>-260 C>T</td>
<td>SuPD</td>
<td>0.006</td>
<td>6.6 (2-26)</td>
<td>Australia</td>
<td>91</td>
<td>-260 C>T</td>
</tr>
<tr>
<td>TLR9</td>
<td>+2848 G>A</td>
<td>SuPD</td>
<td>0.001</td>
<td>1.4 (0.7-2.78)</td>
<td>UK (white)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>TLR9</td>
<td>+2848 G>A</td>
<td>SuPD</td>
<td>0.001</td>
<td>1.4 (0.7-2.78)</td>
<td>UK (white)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>TIRAP</td>
<td>+537 C>T</td>
<td>ProPD</td>
<td>0.003</td>
<td>0.7 (0.4-1)</td>
<td>UK</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>NFKBIA</td>
<td>-837 T>C</td>
<td>ProPD</td>
<td>0.0003</td>
<td>0.6 (0.5-0.8)</td>
<td>UK (white)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>NFKBIA</td>
<td>-818 C>T</td>
<td>ProPD</td>
<td>0.000</td>
<td>0.6 (0.4-0.7)</td>
<td>UK (white)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>NFKBIA</td>
<td>-2844 G>A</td>
<td>SuPD</td>
<td>0.001</td>
<td>1.4 (0.73-2.78)</td>
<td>UK (white)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Cytokines</td>
<td>IL-6</td>
<td>-174 G>C</td>
<td>ProPD</td>
<td>0.04</td>
<td>0.26 (0.01-0.9)</td>
<td>Germany (Caucasian)</td>
<td>123</td>
</tr>
<tr>
<td>Cytokines</td>
<td>MIF</td>
<td>Rs5844572</td>
<td>SuPM</td>
<td>0.02</td>
<td>3.3 (1.3-8.3)</td>
<td>Germany, USA</td>
<td>125</td>
</tr>
<tr>
<td>Cytokines</td>
<td>IL1RN</td>
<td>VNTR</td>
<td>0.003</td>
<td>0.008</td>
<td>2.0 (1.1-3.4)</td>
<td>Central Europe</td>
<td>129</td>
</tr>
</tbody>
</table>

Abbreviations: BM, bacterial meningitis; CD14, cluster of differentiation 14; CEACAM, carcinoantigen cell adhesion molecules; CF, complement factor D; CFH, complement factor H; CI, confidence interval; EPD, extrapulmonary pneumococcal disease; IL, interleukin; IL1RN, interleukin 1 receptor antagonist; IRAK, interleukin-1 receptor-associated kinase; IPD, invasive pneumococcal disease; MD, meningococcal disease; MBL, mannose-binding lectin; MIF, macrophage migration inhibitory factor; MM, meningococcal meningitis; Mort, mortality; NA, not available; NEMO, nuclear factor kappa B essential modulator protein; NFKB, nuclear factor kappa B; OR, odds ratio; PD, pneumococcal disease; Pro, protective; SP-A2, surfact protein A2; SNP, single-nucleotide polymorphism; Su, susceptibility; TLR, Toll-like receptor; TIRAP, Toll IL-1 receptor (TIR)domain-containing adaptor protein; VNTR, variable number of tandem repeats.
Chapter 5

Invasive disease and complement evasion

Disruption of colonized nasopharyngeal epithelium enables bacteria to enter the bloodstream where they can multiply, resulting in bacteremia, often a prerequisite for the development of meningitis. Intravascular invasion by traversing the endothelium is established in a pathogen-specific way.

The critical stimuli for the inflammatory response on invasion with SP are peptido-glycan, LTA and pneumolysin, 35 but not the polysaccharide capsule, which lacks inflammatory potential but inhibits phagocytosis and complement-mediated bactericidal activity [22]. A higher incidence of infections with encapsulated bacteria, especially meningococci, is observed in people with deficiencies in all three pathways (the classical, the alternative and the lectin-mediated pathway) of the complement system [36-39].

C-reactive protein binds specifically to ChoP of SP and next, interacts with complement component C1q to activate the classical pathway of complement [22]. Pneumococcal surface protein (Psp) A and PspC are involved in the inhibition of complement activation by interfering binding of SP with complement factor C3 (classical pathway) and factor H (alternative pathway) respectively [22].

Inside the CNS, complement proteins are important for the innate immune response but they are nearly absent under physiological conditions. However, their concentration increases during BM but will always remain below blood levels [40]. All classical and alternative complement components can be produced in the CNS [41]. The critical role of the complement system for innate immune responses in case of pneumococcal meningitis (PM) and MM is well illustrated in experimental meningitis studies and by case reports in people with specific mutations causing deficiencies in complement components, which will both be discussed here.

Rise of complement proteins seems to be essential for limiting pneumococcal outgrowth within the CNS. Tuomanen et al. [42] provided the first evidence for a functional role of the complement system in limiting PM. In rabbits depleted of C3, intracisternal inoculation of SP resulted in higher bacterial titers than in complement sufficient controls. Using mice, deficient in the complement components C1q, lacking the classical pathway, or deficient of C3, lacking all three pathways, Rupprecht et al. [40] concluded that the complement system limits PM via all three pathways, although it is unable to eradicate the pathogen. C3 deficiency led to diminished CNS inflammation (higher bacterial titers in the CNS, but reduced CSF leukocyte counts) and CNS complications, while survival was decreased, presumably due to worse systemic complications. Earlier, our group demonstrated classical complement pathway activation in PM in rats. C1 inhibitor reduced outgrowth of pneumococci in the brain and resulted in reduced clinical illness, a less pronounced inflammatory infiltrate around the meninges, and lower brain levels of pro-inflammatory cytokines.
SNPs in immune response genes in BM

and chemokines [43]. Data on 10 children with PM demonstrated that the total hemolytic activity of both the classical and the alternate pathways were reduced in one patient, determination of individual complement components indicated predominant activation of the alternate pathways [44]. In four case reports, low C3 levels are associated with recurrent PM [45-48].

As NM is a strictly human pathogen, [49] our knowledge on the role of complement in MM comes from human data, mostly case reports. A study of 35 children with MM showed transiently reduced total hemolytic activity of the classical pathway in one case [44]. In another study, the functional activity of the classical and alternative pathways of the complement system and the levels of C3, C4, and factor B were determined in 10 children with MM. It seems that the alternative pathway is preferentially activated, probably due to the greater ability of endotoxin to activate this pathway in vivo [50]. Four case reports associated frequent episodes of MM with C5, C6 or C7 deficiency [51-54]. Single episodes of MM were also described in C7 deficiencies [55,56]. Two mutations causing deficiency of C8 were diagnosed in an adult following three episodes of MM [57]. A complement factor D (CFD) deficiency was found in one case of MM [36].

Single nucleotide polymorphisms in complement genes

Three SNPs in the mannose-binding lectin (MBL)2 gene result in three variant structural alleles (protein B, C and D), which are associated with decreased MBL concentrations [58]. Roy et al. [59] reported that individuals with homozygote mutants for MBL codon variants are at increased risk of IPD. In contrast, Kronborg et al. [60] found only a non-significant increased risk between the three MBL structural codon variants and IPD. Moens et al. [61] also described a non-significant increased risk of severe pneumococcal infection but combined with the data of Kronborg they described a small but significantly increased risk to develop IPD. Importantly, pooling the data of these three studies revealed a significant increased prevalence of the mutant alleles in the patient groups. A small Turkish study found that the +154 C>T SNP in the MBL gene may have a role in susceptibly to purulent BM in children (31 patients with CSF findings suggestive for BM, 4 positive cultures: 2 SP, 1 NM, 1 Staphylococcus aureus) [62].

The role of MBL SNPs in NM infection is assessed in two studies [63,64]. Variant alleles were more frequent in patients with MD as compared with healthy controls. Three SNPs in the MBL2 gene result in three variant structural alleles and are associated with low serum MBL levels as compared with the wild types but was not associated with nosocomial sepsis or infections with NM or SP in neonates [65]. Another study suggests that MBL2 variants are significantly associated with susceptibility to childhood IMD in an age-dependent manner. The overall frequency of this genotype
was significantly higher in patients infected with NM than in controls (31.8 vs 8.2%). For children under the age of 1 year this association was even stronger [63].

Factor D is an essential factor for C3 convertase complex formation in the alternative complement pathway. Factor D deficiency was found in several patients with MD and factor D-deficient serum appeared to be hyporesponsive to NM in vitro. In two reports, SNPs associated with meningococcal infection are found in the CFD gene [36,66].

Factor H is a complement-regulatory protein in plasma and acts as a co-factor for factor I in the classical and alternative pathways. The complement factor H (CFH) -496C>T SNP affects its activity: the -496 C/C genotype was associated with higher concentrations of factor H and reduced bactericidal activity against NM. The -496 C/C genotype was significantly associated with meningococcal infection [38]. Recently, Davila et al. [14] performed a genome-wide association study and found in a United Kingdom (UK) population SNPs in CFH associated with susceptibility to meningococcal disease. They confirmed these results in two independent cohorts from Western Europe and Southern Europe. They conclude that host genetic variation in these regulators of complement activation play a role in the occurrence of invasive disease upon pathogen acquisition.

Table 1 summarizes the clinical relevant SNPs in complement genes, predisposing for BM.

Crossing the blood-brain barrier and bacterial recognition inside the central nervous system

In order to enter the CNS, bacteria must attach to and finally cross the BBB, a structural and functional barrier that is formed by the brain microvascular endothelial cells (BMECs). SP and NM have shown to be able to invade the BBB within a membrane-bound vacuole [67,68] as live bacteria [69]. This process is enhanced by cytokine release, leading to an increased BBB permeability during meningitis [6]. Pneumococci use endothelial cells that express the platelet-activating factor and cross the endothelial layer via the platelet-activating factor-recycling pathway [68,70]. The binding of pneumococcal ChoP to the platelet-activating factor enables this pathway. Pneumococcal CbpA, via the laminin receptor protein [71] and NanA [72] has also shown to promote the passage of rodent and human BMECs. Using a microvascular endothelial cell culture model it was shown that pneumococci, expressing pneumolysin, were able to breach the endothelial cells, whereas mutant pneumococci, deficient in pneumolysin, were unable to penetrate the cell barrier [24]. Hyaluronidase facilitates pneumococcal invasion by degrading connective tissue. Pneumococcal strains with higher hyaluronidase activity breach the BBB and disseminate more effectively [73]. Strains causing meningitis have significantly higher
hyaluronidase activity than strains causing otitis media. SP has been shown to be nearly twice as efficient at invading cerebral compared with peripheral endothelium. Low polysaccharide content of the capsule and high amount of CbpA and LTA in SP increases the ability of invasion of the BBB [74].

Meningococci traverse the endothelium of the BBB by transcytosis via endocytosis in membrane-bound vacuoles, 67 and recent data also suggest paracellular penetration [75]. NM, via type IV pili-mediated adhesion to human BMECs, can disorganize cell–cell junctions and polarity, opening the paracellular route to invade the meninges [75]. NM has been shown to use several BBB receptors in order to invade the CNS [69,76]. NM pili bind to CD46, a human cell surface protein, richly expressed at BMECs [77], promoting passage of the BBB in human CD46 transgenic mice [78]. NM contains Opc, binding to endothelial fibronectin and anchoring NM to the integrin a5b1 receptor on BMECs [69]. PorA and PilQ bind to laminin receptor protein and contribute to live traversal of the BBB by transcytosis [71] (Figure 1b).

After bacteria have crossed the BBB they are recognized inside the CNS by PRRs on residing cells. TLRs are a major group of PRRs and are also expressed by cells in the CNS, especially on microglia and astrocytes, endogenous cells in the CNS and key players in the immune response in this compartment [79]. Microglia are myeloid derived cells, able to recruit and activate peripheral immune cells, such as monocytes and T-lymphocytes, leading to cellular influx in the CSF. These recruited cells also express TLRs and are able to produce pro-inflammatory cytokines as signaling mediators. Studies in mice with deficiencies in TLRs demonstrated that TLR activation is a key event in meningeal inflammation and for meningitis-associated tissue damage [80].

Many studies showed the importance of TLR2 and TLR4 in PM. TLR activation leads to Myeloid differentiation primary response gene (MyD)-88-dependent production of IL-1 family cytokines via caspase 1, which in turn forms a positive feedback loop that boosts the MyD88-dependent production of inflammatory mediators [80]. NM strains showed activation of TLR2, TLR4 and TLR9 by genetic complementation of HEK293 cells [81]. When bacterial components inside the CNS trigger the inflammatory cascade in the host, various cells like macrophages, (monocyte derived) microglia, meningeal and endothelial cells, produce pro-inflammatory cytokines like tumor necrosis factor (TNF) and interleukins (ILs) on microbial invasion of the CNS. Cytokines and chemokines (proteins inducing migration of inflammatory cells to the site of infection) lead to influx of neutrophils from the bloodstream into the CNS [6]. This enhances the local inflammatory response, further increases the permeability of the BBB and leads to increased intracranial pressure and edema, ultimately resulting in neuronal injury.
Altogether, the CNS is a compartment with suppressed but inducible immune reactivity.

Bacterial recognition and the local inflammatory response cascade are summarized in more detail in Figures 2a and b for SP and NM, respectively.

Figure 2. Sequential steps in the local innate immune response inside the CNS in case of pneumococcal (a) and meningococcal (b) meningitis
SNPs in immune response genes in BM

For severe infections with SP, defects in innate immunity were first discovered by studies on extreme phenotypes, such as recurrent or familial infections. For example, studies in family members with recurrent IPD discovered SNPs in the IL-1 receptor-associated kinase 4 (IRAK4) gene and the nuclear factor kappa B (NFkB) essential modulator protein (NEMO) gene [82,83]. MyD88 has an important role in immunity against PM as shown by MyD88 KO mice, which displayed diminished inflammatory host response in the CNS, as evidenced by reduced CSF pleocytosis, and expression of cytokines, chemokines and complement factors, but also a worsening of disease that seemed to be attributable to severe bacteremia [84]. Human studies on MyD88, show nine children with MyD88 deficiency suffering from recurrent pyogenic infections including IPD, while they were otherwise healthy with normal resistance to microbes [85].

IRAK4 is an important enzyme in TLR-mediated pathogen recognition and its downstream signaling to activate the inflammatory response. NEMO is a regulatory protein downstream of TLR4 and NOD proteins. SNPs in either of these genes were associated with impaired pathogen recognition and in vitro unresponsiveness to LPS and clinically associated with recurrent IPD [83,86-88].
Another approach to study SNPs is by selection of candidate genes on the basis of animal models or systems biology and compare them in a case–control design. We summarize polymorphism studies on TLR2, TLR4, CD14, Toll IL-1 receptor domain-containing adaptor protein (TIRAP/Mal) and NFkB inhibitor genes.

SP generally has the potential to activate immune cells through TLR1/2, TLR4, TLR9, NOD2, and presumably as yet unidentified PRRs and some of these PRRs appear to work synergistically [89]. Moens et al. [90] did not find an association between TLR2 +1736 G>A, +1892 C>A and +2257 G>A and TLR4 +896 A>G (Asp299Gly) SNPs and infection with SP. However, based on murine data they hypothesized that TLR2 and TLR4 were associated with increased susceptibility to develop SP infections. It should, however, be mentioned that neither the controls, nor the patients in their study contained homozygous mutant individuals. Yuan et al. [91] compared SNPs in pathogen recognition genes between children with IPD and healthy blood donors and concluded that genetic variability in the TLR4 +896 A>G and CD14 –260 C>T genes is associated with an increased risk of developing invasive disease in patients who are infected with SP. They found a lower incidence of the TLR4 +896 A>G polymorphism and a higher incidence of the CD14 –260 SNP in patients. No differences were found in incidences of the TLR2 +2257 G>A polymorphism.

TIRAP is an essential adaptor protein for the inflammatory signaling cascade downstream of TLR2 and TLR4. A recently discovered SNP in TIRAP that changes serine to a leucine residue on position 180 (Ser180-Leu; C539T) impairs TLR2-mediated NFkB signaling in reconstitution experiments [92]. Moreover, the 180L variant was less able to bind TLR2 in comparison with the 180S variant. The heterozygous variant was associated with protection to pneumococcal bacteremia [92].

TLR-mediated pathogen recognition induces intracellular signaling leading to the activation of NFkB in the nucleus and subsequent transcription of pro-inflammatory cytokine genes. NFkB inhibitors, coded in NFKBIA, NFKBIB and NFKBIE inhibit this activation. Chapman et al. [93] found two NFKBIA SNPs to be associated with protection against infection with SP and a NFKBIE SNP associated with increased susceptibility. NFKBIB SNPs were not associated with susceptibility to severe PD.

Meningococcal LOS interacts with TLR4, while Neisserial DNA activates TLR9. TLR2 recognizes outer membrane proteins porin B and Lip with its co-receptors TLR1 and CD14. In addition to muramyl dipeptide, the cell wall of NM contains dipeptide meso-diaminopimelic acid, having potentials activating NOD2 and NOD1, respectively [80]. Candidate gene studies on innate immunity genes found relevant polymorphisms in TLR2 and TLR4 genes.

One study on CD14 -159 C>T polymorphisms in 185 surviving IMD patients, did not find an association with susceptibility, neither for TLR4 Asp299Gly SNPs [94].
One study in patients with severe infection with NM studied TLR2 and suggested a protective effect of the TLR2 +1892 C>A polymorphism but only a non-significant higher frequency of this variant was found in control patients [95].

C3H/HeJ mice have an intrinsic point mutation in TLR4 that abolishes LPS responses. These mice are hyporesponsive to gram-negative infections [96]. Arbour et al. [97] demonstrated the importance of TLR4 by finding an association of two TLR4 SNPs with hyporesponsiveness to inhaled LPS in alveolar macrophages and epithelial cells. These two important SNPs of the TLR4 gene (+896 A>G and +1196 C>T) have been intensively studied. TLR4 +896 A>G was determined in a study on meningitis exclusively, but there was no association with the susceptibility to group A meningococcus during epidemics in the Gambia [98]. Most studies have demonstrated that these two TLR4 polymorphisms confer an increased risk to infections, but this finding could not be observed consistently [99]. Agnese et al. [100] did find a significantly higher incidence of Gram-negative infection among patients with mutations in TLR4 compared with the wild-type population. Several genetic studies have examined whether there is an association between TLR4 +896 A>G and bacterial infections. Faber et al. [101,102] showed age-dependent associations with susceptibility to IMD in children up to 1-year old and mortality in these children up to 2 years old. Smirnova et al. [95] investigated rare TLR4 SNPs that are highly variable in humans and animals. They found that TLR4 polymorphisms were obviously more present in patients with severe meningococcal infections. However, the exact functional consequences of these SNPs remain unknown.

The promoter region of the CD14 gene contains a SNP at position -260 C>T that affects the binding of transcription factors. The result of a SNP in the CD14 gene is an elevated expression of CD14 in membrane form on monocytes and neutrophils and in a soluble form in serum (sCD14) [103]. Genetically determined variation in CD14 serum levels may have functional consequences. Recently, we detected a protective SNP in TLR9 +2848 leading to a decreased susceptibility to MM [12].

Table 1 summarizes the clinical relevant SNPs in pathogen recognition genes affecting the susceptibility to develop BM.

Local inflammatory response inside the central nervous system: cytokines and chemokines

Once inside the CNS, bacteria multiply in the SAS and are recognized by innate immune receptors on microglia and astrocytes. The activation of these receptors triggers an intracellular signaling cascade resulting in the nuclear transcription of pro-inflammatory cytokines and chemokines. These small messenger proteins then enhance increased permeability of the BBB (cytokines) and influx of inflammatory cells, mainly granulocytes, from the bloodstream into the CNS (chemokines) [104,105].
Pneumococcal DNA loads are associated with high plasma cytokine concentrations. In children with PM, median CSF cytokine concentrations were significantly higher than plasma cytokine concentrations [106].

TNF-α is produced by a wide variety of cells, including microglial cells, in response to pneumococcal cell wall in vitro. [107,108] In rats, intracisternal treatment with TNF-α alone does only cause minimal inflammatory changes, whereas combined with SP components it resulted in a maximal inflammatory response with high intracranial pressure and brain edema [109]. TNF-α has also been suggested to be involved in the breakage of the BBB during SP bacteremia in mice [110].

IL-1b is one of the early key inflammation-initiating cytokines during PM. CSF bacterial loads in children with PM were associated with CSF IL-1b [106]. Levels of IL-1α and IL-1b mRNA and protein levels are upregulated in the brains of mice with PM [111]. The absence of an intact IL-1 signal in IL1R-/- mice was associated with a higher susceptibility to PM, impaired bacterial clearance, decreased brain cytokine and higher and earlier mortality [111]. Klein et al. [112] intracisternally infected mice with PM and observed markedly elevated levels of IL-1b.

IL-6 is produced by microglial cells in response to SP [108] and is elevated in CSF during PM [113]. IL-6 enhances immune responses and might have a role in the disruption of the BBB but also seems to have anti-inflammatory effects in PM [114]. Comparing wild-type mice with IL6-/- mice, Paul et al. [114] concluded that IL-6 acts as an anti-inflammatory cytokine by suppressing the migration of leukocytes into the SAS but has a major role in the increase in vascular permeability, causing brain edema and increase in intracranial pressure. TNF-α and IL-1b levels in brain tissue of infected IL-6-/- mice were increased compared with infected WT controls.

IL-8 has an important role in the recruitment of leukocytes during PM. In rabbits infected with SP, intravenous, but not intracisternal treatment with anti-IL-8 attenuated pleocytosis significantly [115].

Microglial cells produce IL-12 in response to SP [108]. This induces the production of interferon (IFN)-γ with TNF-α as a co-stimulator.

IL-18 is upregulated during PM in mice and contributes to an unfavorable inflammatory response during meningitis. IL-18 does not seem to affect susceptibility to PM, yet IL-18-/- mice showed a suppressed inflammatory response and a prolonged survival, as reflected by lower concentrations of cytokines in brain tissue and a less profound inflammatory infiltrate around the meninges [116].

A deletion of the TGF-β receptor II on leukocytes is found to enhance recruitment of neutrophils to the site of infection and to promote bacterial clearance in mice with PM. Moreover, this improved immunity was associated with an almost complete prevention of meningitis induced vasculitis and endogenous TGF-β suppressed the innate immune response [117].
IFN-γ is produced by microglia during PM. IFN-γ presence during PM modulated the patterns of LPS induced cytokine release in a dose-dependent, potent and complex manner. Although amounts of TNF-α and IL-6 remained nearly unchanged, IFN-γ enhanced the production of IL-12 [118].

In vitro studies show that leukocytes stimulated by outer membrane vesicles of NM produce TNF-α, IL-1b and IL-8, which was enhanced in the presence of IFN-γ [119].

TNF-α and its soluble receptors are also intrathecally produced in case of MM [120]. IL-1b and IL-1 receptor antagonist (IL-1Ra) are increased in CSF of MM patients, as is the level of IL-1 soluble receptor type II (IL-1sRII) in CSF. The pattern in plasma is different, indicating that the inflammatory response is differentially regulated [121]. IL-8 levels are higher in CSF of MM patients compared with controls [122]. IL-10 inhibits TNF-α, IL-1b and IL-8 production triggered by NM [119]. Mogensen et al. [81] observed that different strains of NM differed in their ability to induce cytokine expression.

Single nucleotide polymorphisms in cytokine genes

After NFkB is activated on bacterial recognition, proinflammatory cytokines are released (IL-1, IL-6, TNF-α) followed by anti-inflammatory cytokines (IL-10 and soluble cytokine agonists such as IL-1 receptor antagonist (IL1RA) and soluble TNF receptors). IL6 –174 [123] IL10 –1082, TNFA -308 and lymphotoxin a (LTA) +252 [124] SNPs were not associated with susceptibility to pneumococcal infection, but IL6 GG carriers were less likely to develop extrapulmonary infection including meningitis [123]. An association was found between a high-expression macrophage migration inhibitory factor (MIF) -794 CATT allele and susceptibility to PM [125]. MIF upregulates TLR4 expression by macrophages.

Several studies on the role of cytokine gene SNPs in meningococcal infection have been performed, especially on IL1 genes. Balding et al. [126] associated IL1RA variable number of tandem repeats SNPs with susceptibility to MD (including one-third meningitis cases), but studies by Carrol et al. [127] and a meta-analysis of Brouwer et al. [10] did not confirm this relation. Read et al. [128] did not find an association of two IL1 SNPs with susceptibility to MD, but patients carrying the common allele at IL1B –511 were more likely to survive and significantly less likely to survive if they also carried the rare allele at the IL-1 receptor antagonist gene IL1RN +2018. In another study, this SNP was also associated with susceptibility and mortality of MD, [129] while no association was found in five other SNPs in IL1A and IL1B. Severity and mortality of MD was associated with IL6 -174 G/G and IL10 -1082 A/A, but not with LTA +252, TNF -308, IL10 -592, or IL1B SNPs [126].

Significant associations of cytokine genes with susceptibility to meningococcal infections are summarized in Table 1.
DISCUSSION

Only for the TLR9 +2848 and MIF –794 SNPs, specific associations were found with meningitis [12,125]. For IPD, the strongest relation with genetic variation was found in genes involved in innate immune cell signaling and in complement genes. TLR2 and TLR4 are important cell surface receptors and animal data have shown their subtle role in the response to PM: deficiency leads to reduced bacterial clearing from the CNS [130,131]. The recognition by TLR4 of pneumolysin in the pneumococcal cell wall is crucial in mounting this response [132]. Although TLR2 and TLR4 SNPs have been shown to be associated with human diseases such as tuberculosis, lues and Lyme’s disease, [133] no association was found between TLR2 and TLR4 SNPs and IPD in a cohort of severely ill patients where SP was cultured from blood, CSF or joint fluid [90]. Their cohort did not include any homozygous mutants for TLR2, which might have shown larger differences but they concluded that variations in TLR genotype is probably a minor cause of increased susceptibility to IPD. Homozygosity of the TIRAP Ser180Leu allele, shown to be associated with IPD, leads to defect MyD88-dependent signaling downstream of TLR2 and TLR4 [92]. Heterozygosity, however, protects against IPD because this leads to attenuated signaling but reduced NFkB activation. It seems that there is a delicate balance between pathogen recognition, inflammation and bacterial clearance: no recognition fails to clear a pathogen but too much inflammation damages the host itself [134]. This observation is supported by the protective role described of the NFKBIA and NFKBIE SNPs and IPD [93].

Strong relations were described for susceptibility of severe meningococcal infections and genetic variation in cell-surface molecule genes, BM genes and cytokine genes. Cell surface proteins in the human nasopharyngeal epithelium (CEACAMs) adhere to meningococcal outer membrane proteins and are important in pathogen acquisition. Genetic diversity of these proteins was described to be associated with susceptibility to MD [34]. As nasopharyngeal pathogen acquisition is an important step in the pathogenesis of BM, we extrapolate this result as important genetic determinant for susceptibility to meningitis as well.

The complement system is important in early pathogen recognition and uses opsonization to clear microbes. MBL, a protein belonging to the collectin group, binds to MBL serine proteases, which activate the complement cascade and opsonize bacteria by means of surface oligosaccharides [59]. MBL deficiency, caused by several SNPs, leads to reduced opsonization in early infection, leading to longer initial survival of SP, thus enhancing the possibility of invasion and subsequent BM. MBL deficiency is not associated with susceptibility for meningococcal infection. CFH is responsible for downregulation of complement activation and polymorphisms in CFH are indepen-
dently associated with MD. Individuals with the C496T CC genotype have increased levels of CFH and have reduced bactericidal activity against meningococci, [38] thus predisposing for MM.

CONCLUSIONS

All together we were able to summarize the literature on SNPs that affect the susceptibility to IPD and IMD. Taken into account the several pathophysiological steps to develop BM we focused on SNPs that very likely predispose to the development of BM by these microorganisms. We advocate that multidisciplinary efforts are needed in order to reveal the exact role of host genetic factors in severe infections including meningitis, which will require large numbers of patients and controls, with the ultimate goal to invent better effective treatment and prevention strategies for severe infections.
Chapter 5

REFERENCES

121. van Deuren M, van der Ven-Jongekrijg J, Vannier E, van Dalen R, Pesman G, Bartelink AK et al. The pattern of interleukin-1beta (IL-1beta) and its modulating agents IL-1 receptor antago-

