Contents

1 General introduction 9

Part 1: Cardiac function

2 Right ventricular ejection fraction is better reflected by transverse rather than longitudinal wall motion in pulmonary hypertension 25

3 Progressive changes in right ventricular geometric shortening and long-term survival in pulmonary arterial hypertension 45

4 Progressive right ventricular dysfunction in pulmonary arterial hypertension patients responding to therapy 63

5 Cardiac phase-dependent time normalization reduces load dependence of time-varying elastance 85

6 Estimation of right ventricular isovolumic pressure from a single ejecting beat in experimental pulmonary hypertension 105

Part 2: Vascular function

7 Proportional relations between systolic, diastolic and mean pulmonary artery pressure are explained by vascular properties 125
Estimation of three- and four-element windkessel parameters using subspace model identification 143

Evaluation of model-independent deconvolution techniques to estimate lung parenchymal perfusion 163

Dynamic contrast-enhanced MRI for quantifying lung parenchymal blood perfusion: Evaluation of deconvolution methods 179

Summary and future perspectives 199

Nederlandse samenvatting 209

Dankwoord 217

Curriculum vitae 223

List of publications 227