The Loyal Dissident: N.A. Bernstein and the Double-Edged Sword of Stalinism

ONNO G. MEIJER¹ AND SJOERD M. BRUIJN²

¹Institute of Fundamental and Clinical Human Movement Sciences, Faculty of Human Movement Sciences, Vrije Universiteit, The Netherlands; Fujian Medical University, Fuzhou, P.R. China
²Institute of Fundamental and Clinical Human Movement Sciences, Faculty of Human Movement Sciences, Vrije Universiteit, The Netherlands

Nikolai Aleksandrovich Bernstein (1896–1966) studied movement in order to understand the brain. Contra Pavlov, he saw movements (thus, the brain) as coordinated. For Bernstein, the cortex was a stochastic device; the more cortexes an animal species has, the more variable its actions will be. Actions are planned with a stochastic “model of the future,” and relevance is established through blind mathematical search. In the 1950 neoPavlovian affair, he came under strong attack and had to stop experimenting. It is argued that the consistency of his work derived both from both dialectical materialism and the relentless attacks of the neoPavlovians.

Introduction: The neoPavlovian Affair

Before the 1950 neoPavlovian coup materialized, Nikolai Aleksandrovich Bernstein (1896–1966) had been pushed aside already. His 1947 book On the Construction of Movement won him the Stalin Prize, but attacks ensued immediately. In the West, the 1948 Soviet Union may be known for the Lyssenko affair (Regelmann, 1980), but in the same year, another affair was brewing, allegedly in the name of Pavlov. Of course, all this had very little to do with Pavlov himself—who had been an ardent anticommunist until 1934, and who delighted in sharp debate rather than plain misuse of power. We will call the 1950 perpetrators the “neoPavlovians.”¹ This is how they started their attacks:

¹Bongaardt, 1996; Bongaardt & Meijer, 2000; Meijer, 2002.

Although the view in the present paper is new, at least in its details, the authors heavily relied on material in Bongaardt’s PhD thesis (Bongaardt, 1996), Bongaardt and Meijer, 2000, as well as Meijer, 2002. Many colleagues shared their memories and insights with OGM, among them: Josif Feigenberg, Anatol Fel’dman, Victor Gurfinke, Alex Kozulin, Yakov Kots, Lev Latash, Grigori Orlovski, Lothar Pickenhain, and Mark Shik. Talking to them was incredibly stimulating and inspiring, but, it should be stressed that the present authors carry the full responsibility for this paper. The present authors thank Alla Vein and Peter Koehler for their stimulation and cooperation, gratefully acknowledging constructive remarks on an earlier version of the present paper by Jaap H. van Dieëen, Hu Hai, Hamid Reza Fallah Yakhdani, Irina Sirotkina, and an anonymous referee. Mark Latash took the initiative of having a historical section in the journal Motor Control, spending his enormous energy and creativity in translating many of Bernstein’s papers for the first time into English, and we are all thankful to him. It is to Mark Latash, to Josif Feigenberg, and to Lothar Pickenhain that we want to dedicate our present understanding of The Loyal Dissident.

Address correspondence to Onno G. Meijer. E-mail: o_g_meijer@fbw.vu.nl
Professor N.A. Bernstein’s valuable and original [1947] monograph presents a profoundly erroneous characterization of the scientific creativity of the brilliant Russian physiologist I.P. Pavlov, one that belittles his importance to Soviet physiology.²

In the Pravda and Sovetskii Sport, Bernstein was accused of relying too much on foreign authors, of “hack work in the guise of science.”³

The overall strategy of the coup appeared to derive from the Kremlin (Pickenhain, 1988).⁴ A scientific committee was installed with Ivanov-Smolensky to lead the scientific attacks. June 28 through July 4, 1950, the actual meeting took place.⁵ Bernstein was not even invited, but his pupils were standing outside the meeting hall, where the proceedings could be heard through loudspeakers (Feigenberg, personal communication). By now, there was no doubt that N.A. Bernstein was past tense:

Prof. Bernstein comes with fantastic hypotheses on the nature of movement coordination, and attempts to reject Pavlov’s theory with a priori arguments. … Although Bernstein’s data are interesting, he has made them unusable with his totally wrong arguments which are factually, as well as methodologically, incorrect.⁶

During the meeting, Anokhin, Beritashvili, Luria, and Orbeli suffered most. Luria even renounced his views, disavowing Anokhin and Bernstein. In a 1951 meeting with neurologists and psychiatrists, Luria stated:

In my work, I failed to take my starting point in Pavlov’s theory of the motor analyser, basing myself instead on the wrong physiological conceptions of P.K. Anokhin and N.A. Bernstein ….⁷

In 1953, Stalin died, and after a while, Bernstein was allowed to participate in scientific meetings again, supposedly because he was the founding father of cybernetics. But even in 1962, four years before Bernstein’s death, it was clear that neoPavlovianism was still alive and kicking. Bernstein presented his “physiology of initiative” (cf. below) to the All-Union Conference on Philosophic Questions of Higher Nervous Activity and Psychology (cf. Graham, 1987), and Lekhtman responded:

²Kriachako, during the 1948 meeting of the Scientific-Methodological Council of the All-Union Committee of Physical Culture and Sports Affairs, cited by Sirotkina, 1995, p. 30. Note the combination of recognition (“valuable”, “original”) with rejection (“profundely erroneous”), which was typical of the neoPavlovian affair.
³Pravda, cited in Sirotkina, o.c., p. 31; cf. Feigenberg & Latash, 1996.
⁴January 12, 1948, Solomon Mikhoels was murdered, a leading figure in the Anti-Fascist Committee during the war, and famous for his work in the Yiddish Theatre. This event marked the start of Stalin’s postwar antisemitic campaign (cf. Judt, 2005)—an important context of the neoPavlovian affair. Thus, Bernstein was “a cosmopolitan without a fatherland” (o.c., p. 183).
⁶Smirnov, 1950/1954; translation from the German by OGM.
⁷Luria, 1951, cited in Pickenhain, 1998, p. 400, translation from the German by OGM. This episode did not hinder the friendship between Luria and Bernstein, the latter clearly understanding what had to be done in order to be allowed to continue working.
… there are serious methodological problems with [Bernstein’s] conception of a “physiology of activity.” This tendentious confrontation … [with] the physiology of reflexes … reveals … the undeniable superiority of the latter, both regarding to facts and to methodology.8

Who was this N.A. Bernstein, so much a nail in the coffin of Pavlov, both in actual fact, and in the power-hungry reconstructions of the neoPavlovians?

The present paper is written by admirers, unfortunately not able to speak or to read Russian. Many people were willing to share their memories and views with one of us (OGM), but, of course, the present authors carry the full responsibility for this intellectual biography of “The loyal dissident.” It will be argued that Bernstein’s great inspiration9 stems from dialectical materialism as well as the shattering unfairness of neoPavlovianism.

Movements almost Exactly Repeat Themselves: 1922–1928

A Russian biography of Bernstein was published recently,10 but for the reader of English, not much material is available.11

Although Jews were generally not granted much opportunity, the Bernstein family was relatively well-to-do, with that German-inspired mentality of the Bürger,12 enjoying private life, serving the nation as required, and showing restraint in public life. Nikolai Aleksandrovich was born, and died, in Moscow (1896–1966), his father a famous psychiatrist, an uncle a famous mathematician. German scientific materialism13 was clearly present in the intellectual background. Nikolai studied medicine, served as a doctor in the civil war after the revolution, practiced neuropsychology in Moscow and studied some mathematics, as well as music, before he was called to join the Central Labour Institute in 1922.

The institute had been Lenin’s idea: Focus on the movements of the workers, make them more efficient, and economic production will increase.14 But Gastev, the director of the institute, was clearly overdoing it, reducing workers to cog-wheels in the machine (Bailes, 1977). Protestors called for a more holistic approach, which would include physiology and psychology. By inviting Nikolai Bernstein to join the institute, Gastev clearly gave in and so convinced his opponents that the institute was on the right track.15

Just as his father had studied the brain through behavior, Nikolai Bernstein used movement as his looking glass to view the workings of the brain. In the 1830s, the

9Ambiguity intended: The statement refers to both what made Bernstein tick, and what makes the story of his work so fascinating to the historian of science.
12For a telling description of this mentality, see Hafner, 1979.
14Labor and sports were of central importance to the state, first in the Soviet Union, later also in the satellite states (cf. Bongaardt, Pickenhain & Meijer, 2000). Hence, the study of “movement” was a perfectly legitimate topic in science, related to physiology and neurology, which explains the ease for Bernstein to move from the Central Institute of Physical Culture to the Institute of Neurology.
15Later, in the mid-1930s, Gastev ran in trouble. He died in Siberia, to be rehabilitated posthumously, after Stalin’s death.
Weber brothers had published a book (1836/1991), arguing that in walking, the swinging leg does not, or not necessarily require muscle force, because it can give in to gravity/inertia. At the time, the book could be seen as attacking Prussian military habits (such as the goose step).16 Around 1900, with Germany unified, and Prussian power greater than ever, Braune and Fischer (1895–1904) expressed their disagreement with the Webers: The will is always needed for movement. In fact, if you look at movement, you can “see” the will.17 Note that this is a dualistic statement, but in Lenin’s Soviet Union there was little pressure on the content of science, and, anyhow, Braune and Fischer were the natural starting point for those who wanted to study movement.

Historically, there were two related problems in the study of biological motion. First, it is often too quick for the human eye, and film had to be invented to make it accessible. Braune and Fischer worked with film (Figure 1), and Bernstein gave great attention to its further development (Figure 2). Second, if you study the ensuing time-series, that is, the actual trajectories of moving points, what you see is rather messy (Figure 3), and you need a dedicated mathematics to understand what is going on. It would take Bernstein several years before he came in touch with such mathematics.18

Bernstein started working at a time of great hopes for many. The civil war was over, economy was doing reasonably well, and it was wonderful to partake in the shaping of a new society. Bernstein’s enthusiasm was infectious. He developed a high-speed camera, the “kymocyclograph,” with a photographic plate standing still. The shutter was a round plate, with holes in it, rotating fast before the lens, so that the photographic plate would repeatedly be exposed for a short time, and the trajectory of the movement would reveal itself with great precision (Figure 4). Here, we see Bernstein at his best: He constructed the shutter himself, but did not trust the formalisms predicting its speed, and he wanted it actually measured. He did so by blowing air through the holes, and using a tuning fork to establish the tone, i.e., the frequency, or shutter speed. At the same time, there were clear signs that he remained inspired by Braune and Fischer, stating that the graphs produced were showing:

\begin{quote}
... With great clarity the high degree of automation ... mechanical simplicity and lawful structure. (Bernstein, 1927, p. 789, as translated in Bongaardt, 1996, p. 24)
\end{quote}

In other words, movements almost exactly repeat themselves. This may require a pause.

Since the 1500s, Europe had seen the working of the locomotor apparatus as that of an automaton, producing the required movement with clockwise precision (Meijer, 2001; Meijer & Wagenaar, 1998).

16See Flesher, 1997. For the Prussian military, the soldier had to be in continuous command of his own body (more or less similar to the way the authorities had to be in command of the citizens). The Prussian army had lost big time from Napoleon in 1806 (Jena and Auerstädt), maybe in part because soldiers had overexhausted themselves by walking ridiculously. Of course, the Weber brothers do not mention these events explicitly in their book. Still, these were dangerous times. Gymnastics had been forbidden by the Prussian government (\textit{die Turnsperr}, 1819–1842, cf. Ueberhorst, 1980), because it was too closely associated with liberalism. And in 1837, Wilhelm Weber actually ran into political problems, that is, by joining with the \textit{Göttingen Seven} in opposing the monarch of Hannover, who had just cancelled the liberal constitution.

17Bernstein found no biological attraction in the free will, and his inspiration by Braune and Fischer’s work was to be relatively short-lived (see below; Meijer & Wagenaar, 1998).

18See the next section, in particular Bernstein’s meeting with Tatiana Popova.
The trouble is that mechanical systems cannot control themselves (Gel’fand & Latash, 1998), and so, science started to search for “something else” to do the control, e.g., “the soul,” or, in late nineteenth century, “the will.” Dualism and the belief that the locomotor system is a perfectly predictable mechanical system are two sides of the same coin. By emphasizing the mechanical automation of overt movement, Bernstein implicitly followed Braune and Fischer’s understanding of the free will. Of course, this was to change.

Movements Never Exactly Repeat Themselves: 1929–1936

In the 1920s, one could find Bernstein cooperating with musicologists, talking to mathematicians, working in Kornilov’s laboratory for Experimental Psychology, and publishing...
a Practice of Experimental Psychology with Luria and Vygotsky. He often used encyclopaedia articles as a playing ground to develop new ideas. In a Grand Medical Encyclopaedia article, published 1929, we find the rather amazing statement that "There are no situations in which muscle shortening is the cause of a movement." Bernstein argues that the organism is always subject to many forces (gravity, inertia, walking against the wind, etc.), rendering it inconceivable that one, isolated muscle contraction "causes" the whole structure of a movement. One year later, he states: "No movement can be entirely planned from its very beginning." Whatever the commanding signals, unexpected things will

20Cited from Fel’dman & Meijer, 1999, p. 119.
21Published in 1930, cited from Beek & Meijer, 1999, p. 5.
Figure 3. Kymocyclogram of recharching a rifle (from “Movements”, Grand Medical Encyclopaedia, 1929, with the addition “author’s data”; cf. Feld’man & Meijer, 1999, p. 114).
happen, and continuous correction is needed. In other words, since the brain is an organizer, the brain itself must be organized.

By 1929, Bernstein had met with Tatiana Popova, a gifted mathematician and scientist with a clear interest in music. In the title of their joint paper, “Studies on the Biodynamics of the Piano Strike,” the term “mechanics” is replaced with “dynamics.” More important, self-organized oscillators appear, completely alien to Bernstein’s earlier writings:

During slow and medium tempi, both the hand and the forearm move under the action of their own active muscle impulses. At medium tempi, a sequence of such impulses merges into a single continuous chain ... During tempi over about 6.5 strikes per second ... hand motion transforms into forced elastic oscillations of a rather simple construction, with force amplitude close to the theoretical minimum.23

22This argument, central in Bernstein 1935/1988, derives from typical Gestalt reasoning and may not be seen as a legitimate argument by all, particularly not by Pavlov, who despised Gestalt for its lack of scientific rigor (cf. the quote at the end of the present paper).

“Oscillations” belong to the great tradition of Poincaré, Krylov, and Lyapounov. In 1931, Adrian and Buitendijk would claim that respiration depends on an oscillator in the brain stem. A formal “Theory of Oscillations” was to be published, in 1937 (cf. 1937/1949), by Andronov and Chaikin. The thing with oscillators is that they fill-in the details themselves. Take your plastic ruler, let a large part of it stick out from the edge of the table, hit it repeatedly with a finger, and it will find its own rhythm. Thus, there is no 1:1 relationship between the commanding signal (the hitting finger), and the ensuing movement.

In his 1929 paper with Popova, Bernstein definitively broke with the views of Braune and Fischer. His new, more “dynamical” view was more in agreement with dialectical materialism (Graham, 1987; Meijer, 2002). Consequently, his opinion on Pavlov’s work was turning more negative. In fact, he had rejected the validity of Pavlov’s theory of conditioned reflexes as early as 1924, but, until 1929, he failed to reach consistency and continued to be inspired by Braune and Fischer. Some of his doubt is visible in a poem Bernstein happily wrote in 1926, in response to Nemlicher’s humorous ridiculization of Pavlov:

… Yes, I do not trust Pavlov one iota. …
Nothing is clear, and the human mind is helpless.
But I will pierce with the reflex all the rubbish about the soul and will.
I know only one thing: I can accept the nonsense of free will
Not more than the myths about fatum.
Life tells you “a” and you reply “b”—Nothing more.
Let Pavlov be an ape,
But our grandfathers were apes as well …

This 1926 poem conveyed critical admiration. The admiration would remain, but, from 1929 onwards, the criticism would continue to grow.

In Pavlov’s physiology of higher nervous activity, cortical cells were responsible for the unfolding of the conditioned reflex. Critics would say that Pavlov’s view of the brain was too static, but Pavlov himself was not, and, in the 1930s, he acknowledged that the
connections were temporary (Pavlov, 1932a/1955), and that there was a dynamic stereotypy (1932b/1955) in the mosaic of cortical functions (1934a/1955). For Pavlov, the cortex was a kaleidoscope of cells connecting input to output, true, a changing kaleidoscope, but whenever you knew the input, you could predict the output. Bernstein disagreed.

These were the years, 1928/1929, when the government started to interfere with membership of the Academy of Sciences. Pavlov was furious, and during a celebration of the 100th anniversary of Sechenov’s birth, he fulminated in front of a shocked audience:

Oh noble and stern apparition [i.e., Sechenov]! How you would have suffered if in living human form you still remained among us! We live under the rule of the cruel principle that the state and authority is everything, that the person, the citizen is nothing. … On such a basis, gentlemen, not only can no civilized state be built, but no state at all can long survive.²⁸

Pavlov’s idiosyncrasy towards the government was the epitome of political incorrectness, and dialectical materialism (cf. Graham, 1987²⁹) cannot be reconciled with Pavlov’s mechanistic views of the brain. Wasn’t this the time for a reshuffling of power? But then, who was there to take the lead? Bekhterev was dead,³⁰ and Kornilov would be denounced shortly (Kozulin, 1984). Bernstein may have been an attractive candidate, but for Bernstein himself, power play was totally out of character.³¹ Still, he was the great hero in the life of Tatiana Popova, and it appears³² that she dreamt of a great future for this inspiring, handsome man (Figure 5).

As if oblivious to grand politics, and grand emotions, Bernstein continued his work with tenacity. Stimulated by Popova’s understanding of the workings of oscillators, he concluded that the global structure of the movement remains the same (Figure 4), while the (details of the) movements never exactly repeat themselves. In his “anti-Pavlov”³³ paper (1935/1988), this global structure became the “topology,” or the “coordination” of the movement. Ultimately, his notion of “coordination” would give him world fame, but the timing of the paper could not have been worse.

In 1934, when Hitler had come to power in Germany, Pavlov decided that Stalin was a lesser danger to mankind and “converted” to Soviet communism, writing that “… we should especially sympathize with and facilitate our government’s struggle for peace.”³⁴ In 1935, the year of Bernstein’s paper on coordination, Pavlov himself was president of

²⁸Pavlov, 1929, quoted from Todes, 1995, p. 400.
²⁹Interestingly, Grachenkov characterized Pavlov’s reflex approach as “mechanistic” in the 1930s (Graham, o.c., p. 197), that is, around the same time that Bernstein would launch his attack on Pavlov’s views. Grachenkov and Bernstein were to remain friends.
³⁰To the best of our knowledge, the rumor that he was killed by the Kremlin because he knew too much (as published in Kozulin, 1984) was, and remains, unsubstantiated.
³¹Witness his decision to cancel the publication of his “anti-Pavlov” book after Pavlov’s death (see below).
³²In the 1930s, she would marry Bernstein’s brother, but after her death, it turned out that she had changed her home into somewhat of a museum of Nikolai Aleksandrovich (Feigenberg, personal communication). Although she remained relatively unknown, Bernstein continued to refer to her work in his publications. But he married someone else.
³³That is, anti Pavlov’s theory of higher nervous activity, emphatically not a personal attack against the man, nor an attempt to belittle his earlier discoveries.
³⁴Pavlov, 1934, cited from Todes, o.c., p. 412.
the 15th International Congress of Physiologists in Russia (Moscow and Leningrad), ending his opening address with the words:35

… We, Russian physiologists, wish to express gratitude to our government which has enabled us to receive our esteemed guests in a worthy manner.

(Applause.)

Not a very good year, then, to claim that this exalted man, Ivan Pavlov, was entertaining a wrong theory of higher nervous activity.

In 1929, it may have seemed politically correct to replace “mechanics” with “dynamics,” and Bernstein himself was to remain inspired by dialectical materialism. Stalin, on the other hand, never was a good communist, and now, the terror was starting: the mass murder of Ukraine Kulaks, and soon, the purges.36 Citizens had to find their sanity in the ordinary things of life.37 for Bernstein, such an ordinary thing was publishing science, and in 1936, he received and corrected the galley proofs of his new book that was to take Pavlov’s brain theory completely apart. Then, Pavlov died, and Bernstein thought it not

36For a chilling description see Aksyonov, 1993–1994, which depicts how alleged dissidents were invited to visit a brightly lit, white-washed room, where they were shot in the neck, falling forward on a moving treadmill, so that the body could be transported automatically onto the waiting truck.
37Aksyonov, 1993–1994; Orlovsky, personal communication; Bongaardt, Pickenhain & Meijer, o.c.
appropriate to attack a dead man. He cancelled publishing the book.38 Thus aborted his first attack of Pavlov’s theory of higher nervous activity. Bernstein used the remaining 30 years of his life to develop a brain theory that would do justice to biology.

The Biology of the Blind Controller: 1936–1966

Darwin’s biology was stochastic, but the theory of oscillations was not, at least not until the 1960s.39 Nevertheless, from 1936 onwards, Bernstein’s understanding of the organization of the brain gave an important place to stochasticity.

He frantically worked at the Laboratory for Biomechanics of the Central Institute of Physical Culture, later became director of the Movement Laboratory of the Institute of Neurology.40 He studied sports, work, and movement pathology,41 further developed his theory of the brain, and he often published on topics of general interest. On June 22, 1941, Hitler attacked the Soviet Union, and when German armies approached Moscow, many citizens fled, or were forced to evacuate. Bernstein and his wife went to Siberia, and later joined his brother in Tashkent. In 1945, sharing the general elation of having won the war, he addressed a conference dedicated to the 300th “anniversary of the idea of reflex and paying homage to its founder, Descartes, and to the great Russian scientists Sechenov and Pavlov.”42 Sic. The audience was in for some amazing statements:

> Since the emergence of (a) the telereceptive function of the head end of the body, (b) the integrative function of the nervous system, (c) jointed skeletons and striated muscles, and (d) neokinetic, “telegraph” spike processes, bioelectrical by nature, the ancient, humoral paleoprocess has regulated the powerful but blind discharge of the neospike.43

Once more, pause is due. Our head serves to perceive at a distance, and it is the function of the brain to integrate such information (per implication, to integrate our actions). Our locomotor system, with striated muscles, allows for precise control, but only blind commands can be given—long-distance action potentials, stochastic events travelling along telegraph wires. The controller is like a general ordering his soldiers to take a certain hill, unable to specify how exactly they may do that.44 In the nervous system, actual regulation resides in the lower, older levels, being of a chemical rather than electrical nature. Note that this turns Sherrington’s view (e.g., 1906) on its head: The amazing thing about the nervous system is not so much the intelligence of the higher levels—the higher levels are about stochasticity. It is the lower levels that ensure biological function, a thought still

38In 2003, it was published in Russian (Bernstein, 1936/2003).

39See, e.g., Haken, 1977; Prigogine & Stengers, 1984.

40Given his tendency to collaborate with many different groups, it is difficult to reconstruct the precise history of Bernstein’s institutional affiliations. To the present authors, it is not exactly clear when he was invited to join Institute of Neurology, nor, for that matter, when exactly he was invited to become corresponding member of the Academy of Medical Sciences (clearly, with the help of his friends, such as Grachenkov).

41See Wagenaar & Meijer, 1998.

43Bernstein, 1945, in Sporns Edelman & Meijer, o.c., p. 294.

44See Greene, 1972. Note that the biological nature of the “controller” becomes difficult to envisage. It is certainly not a single cell in the cortex. In a 1966 paper by Bassin, Bernstein, and Lev Latash (cf. Latash, Latash & Meijer, 1999 & 2000), Bernstein would argue that during every action the whole brain is involved.
against mainstream neuroscience, but logically the only way the brain can have evolved.

Bernstein’s brain belongs to biology.

This dynamical hierarchy was to be the central theme of his book *On the Construction of Movements* (1947), which made him famous and precipitated his fall. Simultaneously, he worked on another book, not published during his lifetime, but by now translated into English: *On Dexterity and its Development* (1945–1946/1996). Dexterity, he argues, is not that animals know the perfect solution to motor problems, dexterity implies that their every act is different from its predecessors. The more cortical cells a species has, the less stereotyped its behavior. Thus it is that organisms can learn. At the time, neoPavlovianism prevented publication, and, after the 1950 meeting, Bernstein was fired. These were the years of Stalin’s second wave of purges. Bernstein and his wife started to take morphine every afternoon (Feigenberg & Latash, 1996), while in the mornings, he would meet and discuss with his students and his peers. Thus, he could continue working, although officially forbidden to do so. More amazingly, he never turned disloyal to communism and dialectical materialism.

After Stalin’s death, Bernstein was allowed to work again, now entering a phase of theoretical rather than laboratory studies. He would argue that biological organisms are active, that is to say, they act upon their environment. Given a need, they will use a stochastic model of the past-present (predicting the possible consequences of potential actions), then go for the full 100% for one action, implying a collapse of the probability model. This “physiology of initiative” would bring him ridicule from the neoPavlovians, but in Bernstein’s view, actions are not controlled by the future, they are controlled by a model of the future (cf. Feigenberg & Meijer, 1999).

In the course of this work, Bernstein would meet with the mathematical giant Gel’fand, and with inspiring Tsetlin, who were elaborating a mathematical theory of searching: How can a blind network solve problems? By varying the values of variables, and then

45 “Dynamical” because which level would do what would be dependent upon the task at hand. In fact, given the task, a specific division into different levels will take place first.

46 “The scale of the punishment meted out to the citizens of the USSR and Eastern Europe in the decade following World War Two was monumental—and, outside the Soviet Union itself, utterly unprecedented. [Show] trials were but the visible tip of an archipelago of repression: prison, exile forced labor battalions. In 1952, at the height of the second Stalinist terror, 1.7 million prisoners were held in Soviet labor camps, a further 800,000 in labor colonies, and 2,753,000 in ‘special settlements.’ The ‘normal’ Gulag sentence was 25 years, typically followed (in the case of survivors) by exile to Siberia or Soviet Central Asia” (Judt, o.c., pp. 191–192).

47 Witness his 1957 discussion of Lenin’s theory of knowledge: “… knowledge through action and revision through practice which is the cornerstone of the entire dialectical materialistic theory of knowledge, and … serves as a sort of biological context for Lenin’s theory of reflexion” (Bernstein, 1957, in the 1967 book, p. 120; cf. Bongaardt, 1996).

48 Conceptually, this is related to the measurement problem in quantum mechanics.

49 Note that this theory forms Bernstein’s most principled attack on Pavlov’s theory of higher nervous activity. In 1935, Bernstein proposed to regard the brain as coordinated, while one could argue that Pavlov lacked a theory about the organization of the brain. Bernstein’s work on stochasticity and the dynamic layering of the brain can be seen as theoretically neutral and was not in contradiction with anything Pavlov had stated in the 1930s. The “physiology of initiative,” however, clearly ran against the hard core of Pavlov’s theory. Interestingly, this theory was formulated after the neoPavlovian coup.

50 Israel Gel’fand (born 1913) is one of the most outstanding mathematicians of the twentieth century. He did his PhD (1935) with Kolmogorov, published a large number of monographs on a variety of topics, and he wrote important textbooks for mathematical education. In 1958, he became interested in biology and medicine and started, with Fomin, the Institute of Biological Physics. Three times he was awarded with the Order of Lenin. He was elected honorary member of scientific societies in many countries, and he received several honorary doctorates, including one from Oxford University. In 1989–1990, he taught at Harvard and in 1990 also at MIT. In that year, he emigrated to the United States.

51 Gel’fand & Tsetlin, 1961.
“seeing” what the consequences are! If these consequences are large, the variable in question is “essential.” So, what you need for blind search is a tendency to vary, and some optimisation criterion, both clearly properties of biological systems. In the Moscow Institute for Biological Physics, later in the Institute for Information Transmission, a movement-dedicated group of researchers formed, informally called “the Bernstein school,” or “the Gel’fand school”—both labels appear appropriate. It was a tightly knit group, even enjoying holidays together. Bernstein now realized that the variability of movement execution (of the details, as different from the overall coordination) revealed search behavior in the sense of Gel’fand and Tsetlin:

... those aspects of the remaining variability that have no reactive adaptive value can justifiably be looked upon as search-variability, in which the active exploration of the environment, its gradients, the optimal way to act, et cetera, come to the fore.\(^\text{52}\)

In 1965, Bernstein knew that he was suffering from kidney cancer. He received his pupils and discussed their future with them, remaining incredibly active himself,\(^\text{53}\) until one day in 1966, Luria called Bernstein’s friends and brought the devastating news: Nikolai Aleksandrovich had died. None of the traditional (neoPavlovian) institutes wanted to host the funeral, but, while the director of the Institute of Higher Nervous Activity was away in the Soviet Far East, and an assistant agreed. So it came to be that “Pavlov’s portrait was staring down at Bernstein’s coffin” (Bongaardt, 1996, p. 47) when Gel’fand took the chair and read a poem by Boris Pasternak:

To give your all—this is creation
And not to deafen and eclipse
How shameful when you have no meaning
To be on everybody’s lips!\(^\text{54}\)

A Moscow Renaissance

Students of movement are still baffled by the incredible creativity that emerged from Moscow in the late 1960s. A large number of inspiring studies sprung from a group of scientists, headed by Viktor Gurinkel. Shik and Orlovsky (cf. 1976), for instance, discovered that a mesencephalic cat can still walk when supported against gravity, a finding that was the talk of the day in Moscow.\(^\text{55}\) Furthermore, Anatol Fel’dman came to realize that motor control may target the threshold of the stretch reflex, the “lambda model,”\(^\text{56}\) implying that force is not normally controlled, but rather the equilibrium point.

In 1967, a compilation of Bernstein’s papers was published in English (Bernstein, 1967). His seminal conception of “coordination” inspired Peter Greene in the United Kingdom (e.g., 1972), and then Michael Turvey (e.g., 1990), and Scott Kelso (1995) in the

\(^{52}\)Bernstein, 1965, cited from Bongaardt, 1996, p. 95.

\(^{54}\)Pasternak, 1964, p. 70, cited from Bongaardt, 1996, p. 47; original poem in Russian.

\(^{55}\)The KGB heard of it and invited the group to construct computer-controlled cats to spy in the White House (Fel’dman, Gurinkel, Shik, personal communications).

\(^{56}\)For instance, Fel’dman 1986; see also: Meijer, Kots & Edgerton, 2001. Note that Bizzi’s model of alpha-control (e.g., Bizzi et al., 1982), although historically related, is different in principle from Fel’dman’s model.
United States. John Whiting edited a republication of the 1967 book, together with chapters that discussed contemporary relevance (Whiting, 1984). In the Soviet Union, Petr Anokhin, Josif Feigenberg, and Yakov Kots did much to keep the heritage alive. Friends would often meet in private, behind closed curtains (Pickenhain, personal communication), and in the German Democratic Republic, Lothar Pickenhain succeeded in publishing a translation of Bernstein’s papers under the rather innocent title “Movement Physiology.”

There is, of course, the risk that we admire Bernstein because we need the mythology of a founding father. Still, his relentless search for the biology of movement, and thus, of the brain, is inspiring in and of itself. For centuries, science was unable to avoid dualism, and the very fact that dialectical materialism was the official philosophy of the Soviet Union may have facilitated Bernstein in discovering some basic principles of biological organization, that is the coordination of movement (and of the brain). Moreover, it is awe-inspiring to see how human beings could survive and could thrive under the terror of Stalinism. In fact, the adverse forces of neoPavlovianism appear to have led Bernstein further on his own path, rather than distracted him. There is human solace in that interpretation.

The subtitle of our paper—the double-edged sword of Stalinism—suggests that both dialectical materialism and the neoPavlovian coup contributed to the development of Bernstein’s theory. Not many Russian colleagues will agree with our armchair analysis. But then, intelligence may be stochastic and could work in ways very different from what Pavlov believed. In his attack of Köhler’s monkey work, Pavlov concluded:

> When the ape becomes tired, as a result of his unsuccessful efforts [to take hold of the fruit], he gives up and remains for some time in sitting posture. When he has rested he tries again and succeeds in accomplishing his task. According to Köhler, the ape’s intelligence is proved by the fact that he sits for a period without doing anything. He literally says that, gentlemen. In his view the ape accomplishes some kind of intellectual work when it is sitting, and this proves its intelligence. How do you like it? It turns out that nothing but the silent inaction of the ape proves its intelligence!\(^58\)

References

\(^{57}\) Pickenhain & Schnabel, 1975/1988. Such publishing a “dissident’s” (i.e., Bernstein’s) view, was not done in the German Democratic Republic, but Pickenhain was careful enough to get away with it (cf. Bongaardt, Pickenhain & Meijer, 2000).

\(^{58}\) Pavlov 1934b/1955, pp. 558–559.

Bernstein NA (1924): Trodovye tranirovki i uslovnye refleksy [Work movements and conditioned reflexes]. *Organiztsiia Truda 84*. (Reference courtesy of Irina Sirotkina.)

Fel’dman AG (1986): Once more on the equilibrium point hypothesis (lambda model) for motor control. *Journal of Motor Behavior 18*: 17–54.

Bernstein, The Loyal Dissident

Wagenaar RC, Meijer OG (1998): Bernstein’s revolution in movement medicine: Coordination disorders and the recovery of walking biodynamics after cerebrovascular injuries (1954). (Contains an English translation of Bernstein’s 1954 paper, with G.R. Buravtseva, that appeared in the *Proceedings of the VIIth Meeting of the Scientific Institute of Neurology of the Academy of Medical Sciences of the USSR* (pp. 28–30). Moscow, Academy of Medical Sciences.)