Analysis of 3-D Ultrasound of Calf Muscle Geometry in Children

Children with spastic cerebral palsy are often impaired in their gait as a result of a decreased range of motion of their ankle joint. Common treatment of the decreased range of motion seems successful in the short term. However, in the long-term, success of this treatment is highly variable. In this thesis, the effects of growth and spasticity on calf muscle geometry in children, as well as the effects of treatment on spastic calf muscle geometry are investigated. This is done using a novel measurement protocol combining 3-D ultrasound and ankle dynamometry.

Analysis of 3-D Ultrasound of Calf Muscle Geometry in Children

Growth, Spasticity, Mechanisms and Treatment

Menno Bénard

Analysis of 3-D Ultrasound of Calf Muscle Geometry in Children

Moven Bénard


TO IMPROVE

VU University Research Institute MOVE is a collaboration between researchers of the Faculty of Human Movement Sciences, VU University Medical Center and the Academic Centre for Dentistry Amsterdam. The research of MOVE is related to human movement and health, with an emphasis on prevention and recovery of injury and disorders of the (neuro-)musculoskeletal system, on optimal recovery of tissue and function, and on motor control and coordination. MOVE aims at fundamental, multidisciplinary and translational research, especially in the fields of (oral) regenerative medicine, rehabilitation and sports.

Uitnodiging

voor het bijwonen van de openbare verdediging van mijn proefschrift

Op vrijdag 2 december 2011 om 9:45 in de Aula van de Vrije Universiteit De Boelelaan 1105 Amsterdam

Receptie na afloop

Menno Bénard
Haarlemmermeerstraat 132-1, 1058KH Amsterdam
menno.benard@hotmail.com

Parrimfen
Johan Koolmeijer
de_koe@hotmail.com
Mathijs Hofwijser
m.hofwijser@vumc.nl