Modelling CH$_4$ emissions from arctic wetlands: effects of hydrological parameterisation

4.1. Introduction

Together with water vapour and carbon dioxide (CO$_2$), methane (CH$_4$) is an important contributor to the warming of the atmosphere. The atmospheric mixing ratios of so-called greenhouse gases, CO$_2$, and nitrous oxide (N$_2$O) have increased about 31%, and 17%, respectively, above pre-industrial values, whereas CH$_4$ has increased 151 ± 25%, (Watson et al., 2001).

The CH$_4$ concentration in 2005 of about 1774 ppb is more than double its pre-industrial value. Increases in atmospheric CH$_4$ concentrations since pre-industrial times have contributed a radiative forcing of +0.48 ± 0.05 Wm$^{-2}$. Current atmospheric CH$_4$ levels are due to continuing anthropogenic emissions of CH$_4$, which are greater than natural emissions. Emissions from individual sources of CH$_4$ are not as well quantified as the total emissions, but are mostly biogenic and include emissions from wetlands, ruminant animals, rice agriculture and biomass burning, with smaller contributions from industrial sources including fossil fuel-related emissions (Solomon et al., 2007).

About 60% of global CH$_4$ emissions come from human-influenced sources and the rest are from natural sources (Houghton et al., 2001). Natural sources include wetlands, termites, oceans, and hydrates. Natural sources are dominated by wetlands. Where soils are waterlogged and oxygen is absent, methanogenic micro-organisms produce large amounts of CH$_4$ as they respire organic matter to CO$_2$ to derive energy. Wetland CH$_4$ emissions are thought to comprise around 80 percent of the total natural CH$_4$ source. Total annual CH$_4$ emissions from natural sources are estimated to be around 250 Tg (Reay, 2006).

In the past decade the overall annual rate of CH$_4$ growth has decreased and become highly variable (Dlugokencky et al., 2003; Ciais et al., 2005). Ciais et al. (2005) attributes the decrease to a temporary reduction in anthropogenic emissions and the increased variability to wetland emission distribution. The largest CH$_4$ atmospheric mixing ratios are north of 40 °N (Steele et al., 1987). This distribution coincides with the concentration of wetlands in the northern hemisphere and suggests that wetlands in this area may make a significant contribution to the global CH$_4$ budget (Moore and Knowles, 1990; Aselmann and Crutzen, 1989; Crill et al., 1988; Matthews and Fung, 1987).

The magnitude of the CH$_4$ emissions from wetlands is controlled by the dynamic balance between CH$_4$ production and oxidation rates in the peat profile and by transport mechanisms (Bubier and Moore, 1994). Measured emissions demonstrate high spatial and temporal variation (Moore et al., 1990; Whalen and Reeburg, 1992; Dise, 1993) linked to environmental factors such as variation in temperature and ground water level.

Chapter 4

CH₄ production and oxidation rates depend on substrate availability and supply, temperature and activity of the CH₄-producing and CH₄-oxidizing bacteria, affected by the redox status in the soil matrix which in turn is linked to the soil moisture condition and hydrochemistry (Kettunen et al., 1999). Changes in both substrate availability and oxidation state during the growing season affect the population dynamics of methanogenic and methanotrophic bacteria (Svensson & Rosswall, 1984; Whiting & Chanton, 1993) and are reflected in the net CH₄ flux (Kettunen et al., 1999).

The water table in many wetlands shows a seasonally related variation, with low levels in midsummer when evapotranspiration is high and high levels in the rest of the season when precipitation dominates. The amount of variation depends on the water sources of the wetland (precipitation, groundwater or surface water flow). Because of the presence of microtopography (hummocks, hollows and lawns, Bubier et al., 1993b) the micro-topography of a wetland has a very high spatial variability which determines also spatial variability in methane fluxes. Bubier et al. (1993b) found that the CH₄ flux follows the trend: hollows > lawns > hummocks. The hollows have a much higher CH₄ emission than the other micro-relief features. The same holds for sedge lawns and wet parts of river floodplains (Van Huisteden et al., 2005). A characteristic of high latitude wetlands is the presence of the permafrost. Studies have shown that approximately 14% of the global carbon is stored in permafrost soils and sediments (Post et al., 1982). The frozen subsoil contributes to waterlogged soil conditions in permafrost wetlands. However, observations have shown that permafrost degradation causes an increase of methane fluxes by changes in local hydrology and ecosystem balance. More widespread thaw across the discontinuous permafrost region will be an important consideration to boreal C budgets with future climate change (Turetsky et al., 2002). Adequate modelling of these processes requires above all a correct modelling of the effects of water table on CH₄ fluxes. Models also should perform well in situations where ground water table observations are not available.

4.2. Material and Methods

4.2.1. Site description

Kytalyk. The study area is located in Northeastern Siberia, in the Kytalyk Reserve, in the Indigirka lowlands near Chokurdakh (70°48’ N, 147°26’ E, elevation 48 m a.s.l.). The research area consists of three different morphological units: the river floodplain, the river terrace and the high plateaus (10-30 m) underlain by continuous permafrost. The area is characterised by silty soils with a peaty topsoil. The study site is located in river lowlands consisting of fluvial terraces of Late Pleistocene and Holocene age, and the recent floodplain of a meandering river with extensive backswamps situated behind natural levees. Next to the floodplain, a terrace (Holocene age) approximately 2 m above the present floodplain is found, consisting of a drained thermokarst lake floor, with
hummocky moist tundra in the dryer parts and a mature network of low-centred ice wedge polygons in the lower parts. The next higher level in the landscape consists of so-called 'ice complex' hills, which probably represent a higher Pleistocene terrace. The CH$_4$ flux measurements were confined to the lower terrace and the river floodplain. The climate is high arctic, with an annual average temperature measured at the Chokurdakh airport weather station of -14.3 °C, the warmest month being July, the coldest January (data derived from NOAA website and summarised by Van Huissteden et al., 2006b). The source for the air temperature, precipitation and snow data were local measurements in summer, supplemented with data from the Chokurdakh airport weather station. Missing values were interpolated.

Figure 4-1. Location of the study site, Kytalyk Reserve, NE Siberia (modified after Van Huissteden et al., 2006a).

At Kytalyk, the vegetation of the lower terrace/drained thaw lake consists mainly of ombrotrophic *Sphagnum* mire, alternating with interconnected depressions dominated by sedges and *Eriophorum*. On the dryer parts *Betula nana*, *Salix* and *Eriophorum* hummocks dominate. On the river floodplain vegetation varies from *Carex/Eriophorum* fen with grasses in wide backswamp areas, to *Salix* shrub on levees. The active layer ranges from 18 cm at dry, *Sphagnum*-covered sites on the terrace, to up to 53 cm in some parts of the floodplain. Thermokarst processes are active along the river bank and thermokarst lake banks.

Stordalen. The Stordalen Mire (68°21’ N, 19°02’ E, elevation 360 m a.s.l.) is situated at about 10 km east of Abisko Scientific Research Station, Sweden (Öquist et al., 2001). This mire was part of the International Biological Programme, and has been studied since the early 1970s. The site is about one kilometer from, and ten meters above Lake Torneträsk.
The entire Stordalen mire is 25 ha large and is treeless. It is made up of four major habitats: (1) elevated, nutrient-deficient (ombrotrophic) areas with hummocks and small shallow depressions; (2) wet, nutrient-richer (minerotrophic) depressions; (3) pools and (4) brooks bringing water to and from the complex (Rooswall et al., 1975). With regard to the permafrost and the plant cover composition, the site is a typical northern peatland. The elevated parts are on permafrost and have tundra-like vegetation (Rooswall et al., 1975).

The climate is subarctic, with a mean annual temperature of -0.7°C, the warmest month being July and coldest February. The annual precipitation at Abisko is the lowest in the northern part of Sweden of about 300mm (records from 1913-2003, Öquist et al., 2001).

This study focuses on a wet minerotrophic area of the mire, where the water table is situated near the soil surface and the vegetation is dominated by *Eriophorum angustifolium*. In the drier parts of the mire the *Eriophorum vaginatum* and *Carex rotundata* dominates the *Sphagnum* spp. (Öquist and Svensson, 2001).

4.2.2. Measurements

4.2.2.1. CH$_4$

Kytalyk. During 2004-2006, the CH$_4$ fluxes were measured in Kytalyk in short (few days) field campaigns during the summer period. The flux measurements were made using closed chambers, in a roving manner, in order to sample a wider variety of vegetation type and hydrologic conditions (Van Huissteden et al., 2005; van der Molen et al., 2007).

Stordalen. CH$_4$ fluxes were measured using the closed chambers technique (Christensen, 1993, 1995). The automatic chamber system at the Stordalen Mire is described by Bäckstrand et al. (2008) and similar to the system developed by Goulden and Crill (1997). The measurement of CH$_4$ was made manually. The chambers are placed on both wet and dry parts of the mire, but only the data from the chambers on the wet part were used. Samples of the chamber headspace air were taken from the main sample air flow downstream from the gas analyzers. For 2004 and 2005 the CH$_4$ fluxes were taken from the automatic chambers and for the year 2006 data from the eddy correlation tower (Christensen et al., 2004) were used.
4.2.2.2. Water table measurements and simulations

Kytalyk. The ground water table was determined after the flux measurements in a hand auger hole. During the summer of 2004 daily values were recorded over four consecutive days (27-31 July; Van Huissteden et al., 2005). In 2005, measurements were made between 20 and 30 July. In 2006 the water table was measured daily from 15 to 18 August.

Stordalen. Water table position relative to surface level was measured manually 3-5 times per week at all sites (Bäckstrand et al., 2007). For the purpose of this study, and to match with the measured CH₄ fluxes, only data from the wet part of the mire were used.

4.2.3. Model description

4.2.3.1. The PEATLAND-VU Model

PEATLAND-VU is a process-based model of CO₂ and CH₄ emission from peat soils at various management scenarios. It includes a slightly modified version of the Walter (2000) soil profile scale CH₄ flux model (Van Huissteden et al., 2006a) and a simplified soil physical model to simulate soil temperatures and soil freezing/thawing.

It consists of four submodels: a soil physics submodel to calculate temperature, water saturation and ice content of the soil layers, a CO₂ submodel, a CH₄ submodel and an organic production submodel (Van Huissteden et al., 2006a).

The CH₄ submodel is based on Walter et al. (1996), Walter (2000) and Bogner et al. (2000). The model of Walter (2000) includes:
1) CH₄ production depending on substrate availability;
2) CH₄ oxidation within the aerated soil topsoil and in plant roots and stems;
3) CH₄ transport by diffusion above and below the water table;
4) transport by ebullition below the water table;
5) transport through plants (Van Huissteden et al., 2006a). For this study we only used PEATLAND-VU to estimate CH₄ fluxes.

The model requires as input a soil profile description with organic matter content, dry bulk density and pF curves for each soil horizon, and time series for soil surface or air temperature, water table depth and snow cover for each model time step (1 day in this study). Output of the model is the surface CH₄ flux, including contributions from the different transport pathways.

4.2.3.2. Input data and parameterisation of the model

The input data for PEATLAND-VU Model can be obtained from generic data, e.g. soil profiles and weather data stations (Van Huissteden et al., 2006a). Some soil parameters, e.g. initial conditions for the amount of carbon stored in different soil organic matter reservoirs (peat, labile and resistant organic matter reservoirs) and their decomposition rates, are difficult to measure without more extensive soil organic matter analysis facilities and need estimation from literature (e.g. Rooswall et al., 1975). For the Kytalyk site there are no quantitative data available yet on soil organic matter content. We, therefore, used comparable organic matter content data from the Swedish site. The PEATLAND-VU model CH₄ simulations are not very sensitive to the exact soil composition (Van Huissteden et al., 2006a). Parameters for the CH₄ model that need calibration are the CH₄ production rate R₀ (Walter, 2000); in practice the oxidation of CH₄ during plant transport is also a poorly quantified parameter that may need calibration (Van Huissteden et al.,

59
Based on the input data, simulations were carried out and the output CH$_4$ fluxes were compared with the measured ones (only for the Kytalyk site: three values represented with error bars). All input data (climate, soil parameters, vegetation type and ground water depth) were based on observations at the sites.

Table 4-1. Soil physical parameters per soil horizon as used in the PEATLAND-VU Model. The data from Kytalyk were estimated based on the data from Stordalen (Rosswall and Heal, 1975; Van Huissteden et al., 2006a).

<table>
<thead>
<tr>
<th>Soil physical parameters per soil horizon</th>
<th>Kytalyk (estimated data)</th>
<th>Stordalen (measured data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of horizons</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Horizons depths with respect to surface (in meters)</td>
<td>[0.1, 0.2, 2.0]</td>
<td>[0.1, 0.2, 0.3, 2.0]</td>
</tr>
<tr>
<td>C/N ratios for each soil layer</td>
<td>[15, 15, 15]</td>
<td>[88, 102, 519, 808]</td>
</tr>
<tr>
<td>Dry bulk density for each horizon (kg m$^{-3}$)</td>
<td>[100, 130, 975]</td>
<td>[90.0, 80.0, 70.0, 5.0]</td>
</tr>
<tr>
<td>Percentage organic matter for each horizon</td>
<td>[95.0, 80.0, 5.0]</td>
<td>[90.0, 80.0, 70.0, 5.0]</td>
</tr>
<tr>
<td>pH</td>
<td>[6.0, 6.0, 7.0]</td>
<td>[4.0, 4.0, 4.1, 4.0]</td>
</tr>
</tbody>
</table>

For 2004 to 2006, the Stordalen climatic data sets were provided by the Abisko Scientific Research Station. For Kytalyk the data were obtained from Chokurdakh weather station at the local airport. In addition, air and soil temperature data measured on the site for micrometeorological CO$_2$ and H$_2$O flux measurements were used (van der Molen et al., 2007). Several parameters influence the simulations and were calibrated. The most important ones were: the CH$_4$ production rate R_0 was set at the low end of the range indicated by Walter (2000) (Van Huissteden et al., 2006a).

4.2.3.3. Water table simulations

The ground water table depth strongly influences the CH$_4$ fluxes. Two runs were performed with two different water table files. The first was the measured water table and the second was simulated using equations based on the Mixed Mire Water and Heat Model (MMWH) of Granberg et al. (1999) as modified by Yurova et al. (2007).

The hydrology of the model is represented by a simple bucket approach describing the change in water content of a unit area (Granberg et al., 1999). The MMWH model was developed to reconstruct the water table position in the upper active layer of boreal mixed mires. This approach is based on the steady state moisture distribution in the unsaturated zone, which is simulated by the van Genuchten (1980) functions, simplified and parameterised for the peat of different types by Weiss et al. (1998). The lateral flow is modelled dynamically, including the transmissivity feedback: the increase in runoff associated with higher water table due to change in hydraulic conductivity (maximum at the surface and reduces strongly with depth). Calculated potential evapotranspiration is reduced when the water table drops below the peat surface, and this decrease is exponential with depth of the water table. The depth of permanent saturation, peat composition and soil physical properties are the main site-specific model parameters.
4.3. Results

4.3.1. Annual climate variations

Stordalen. The variation in climate parameters for 2004-2006 is shown in Figure 4-3. The average value for air temperature was 1.07 °C, the coldest day being the 3rd of March 2006 (-29.36 °C) and warmest the 5th of July 2005 (19.69 °C). Abisko is in the rain shadow of the Norwegian mountains and the precipitation received is among the lowest in Scandinavia (Johansson et al., 2006). The total precipitation for the period 2004-2006 is 612 mm. There were gaps in data for the soil temperature at 3 cm depth which were due to the malfunction of the instrument. The gaps were filled in by linear interpolation.

The winter precipitation is mainly snow. The mean snow depth on the Stordalen Mire during this period was 0.18 m. This is different from Abisko, due to snowdrift effects in the open space of the Stordalen Mire. Soil temperature records were measured at Stordalen Mire.

Figure 4-3. Three years weather data records from the Stordalen Mire (source: Abisko Scientific Research Station).

Kytalyk. Figure 4-4 shows the three years record for climate parameters at the Siberian site. The mean temperature for the three years was -13.1 °C, the coldest day being 22nd of December 2004 (-46 °C) and the warmest 4th of July 2005 (23 °C).
4.3.2. Water table and active layer measurements

Stordalen. For this study the water levels from the wet portion of the mire were used, as presented in Figure 4-5. The active layer was measured at Stordalen mire at different sites, from 17.06-20.09.2004 and on 22.09.2005 at 121 sites. The mean value for the year 2004 was 50.7 cm and for 2005 was 66.6 cm.

Kytalyk. The water table measurements (Table 4-2 and Figure 4-6) were made during the field campaigns. We used the average water table for the floodplain sites to interpolate between periods with modelled water table depth. In Table 4-2 the averaged values (7 point measurements in 2004, 21 in 2005 and 12 in 2006 from the floodplain wet area) are shown.

<table>
<thead>
<tr>
<th>Year</th>
<th>Average water table (cm below surface)</th>
<th>Average active layer thickness (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0.71</td>
<td>42.8</td>
</tr>
<tr>
<td>2005</td>
<td>2.8</td>
<td>42.5</td>
</tr>
<tr>
<td>2006</td>
<td>0.16</td>
<td>53.5</td>
</tr>
</tbody>
</table>

Using as input the climate data, we modelled the water table depth with the MMWH model (Granberg et al., 1999, modified by Yurova et al., in press). Figure 4-5 shows the simulation for Stordalen mire and Figure 4-6 for Kytalyk.
Figure 4-5. Measured (black dotted) and simulated (black) water table depth at Stordalen Mire for 2004-2006.

Figure 4-6. Floodplain water table depth modelled with the MMWH Model for Kytalyk site 2004-2006. The error bars are the 1-standard deviation levels.

The deviations between data and model for the Stordalen simulations is within the maximum range of deviations of 10 cm as reported in Granberg et al., (1999). The reason is that the MMWH model tends to underestimate the higher water tables and overestimate the lower ones. Partly this may be caused by inaccuracies of the water table caused by vertical movements of the mire surface together with the varying water table (Fritz et al., 2007). In particular for 2006 the model underestimates the water table. The year 2006 had a low amount of precipitation; possibly the water table was maintained by groundwater input which is not included in the model. The cause of
the deviation between data and model for the Kytalyk simulations is the excessive drainage of the floodplain caused by an abnormal low water level of the river water in 2005.

4.3.3. CH$_4$ fluxes

The PEATLAND-VU model was run for the two sites and tuning was performed for the most sensitive parameters: the CH$_4$ production rate R_0, Q_{10} and plant oxidation type. For Kytalyk the value for R_0 was set to 0.3 μMh$^{-1}$ and for Stordalen to 0.25 μMh$^{-1}$ for both WT approaches; the Q_{10} value for temperature correction CH$_4$ production (range 1.7 - 16 in Walter and Heimann, 2000) was set at a value of 4 for the Swedish site and 2 (simulations with observed WT) and 3 (simulations with simulated WT) for the Siberian site; and the CH$_4$ plant oxidation fraction was set at 0.6 for the Siberian site and at 0.7 for the Swedish site. For a better estimation of R_0 and Q_{10}, and to double-check the tuning, sensitivity parameter estimation for Q_{10} and R_0 test was carried out. The best fit between the two parameters was Q_{10} value 4.4 and R_0 value 0.22, close to the used parameters (Figure 4-7).

Table 4-3. List of calibrated parameters used in PEATLAND-VU runs for the two sites.

<table>
<thead>
<tr>
<th></th>
<th>Kytalyk calibrated parameters</th>
<th>Stordalen calibrated parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model runs with observed WT</td>
<td>Model runs with simulated WT</td>
</tr>
<tr>
<td>R_0</td>
<td>0.3 μMh$^{-1}$</td>
<td>0.25 μMh$^{-1}$</td>
</tr>
<tr>
<td>Q_{10}</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>P_{ox}</td>
<td>0.7</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Figure 4-7. Parameter estimation for the CH$_4$ production Q_{10} and R_0 values of the model for Stordalen. The grid cells of the figure indicate the squared deviations of the model from the data.
Modelling CH₄ emissions from arctic wetlands: effects of hydrological parameterisation

Stordalen. Using the measured water table depth from the fen part of the Stordalen Mire, the CH₄ flux trend is similar to the simulated one. The range of the measured CH₄ flux varies between 0.0 mg m⁻² hr⁻¹ and 18 mg m⁻² hr⁻¹ (average value of 4.7 mg m⁻² hr⁻¹), while the simulated emissions vary between 0.0 mg m⁻² hr⁻¹ and 26.9 mg m⁻² hr⁻¹, with an average value for the three years of 3.5 mg m⁻² hr⁻¹ (Figure 4-8).

![Figure 4-8. Measured (grey) and simulated (black) CH₄ emissions for 2004-2006 at Stordalen Mire with measured water table (see Figure 4-5).](image)

A second run, using the simulated water table from the changed version (Yurova et al., 2007) of Granberg et al. (1999) was performed with the PEATLAND-VU model. The CH₄ fluxes show a very similar pattern for the years 2004 to 2006 (see Figure 4-9). The measured CH₄ emissions from the fen portion of the mire, averaged a value of 4.7 mg m⁻² hr⁻¹ (data from two chambers for the 2004 and 2005 years and measured data with TDL for 2006) and range between 0.0 mg m⁻² hr⁻¹ and 18 mg while the simulated fluxes range between 0.0 mg m⁻² hr⁻¹ and 18.5 mg m⁻² hr⁻¹ with averaged value of 2.5 mg m⁻² hr⁻¹. The CH₄ flux peak in both model and data was during the same month (September) and the period with active emission coincides with the growing season (April – October).
Figure 4-9. Measured (grey) and simulated (black) CH₄ emissions for 2004-2006 at Stordalen mire using the simulated water table from Figure 4-5.

Kytalyk. For Kytalyk the measurements for the water table depth were done for four consecutive days in 2004, 10 days in 2005 and four day in 2006. Due to the very remote area it was not possible to perform yearly measurements, therefore the water table input file used by PEATLAND-VU was constructed based on the available data and on the assumption that the minimum water depth is 5 cm below ground and does not exceed 15 cm depth during winter time. The active layer was simulated with PEATLAND-VU based on the output temperature file constructed by the model using the air temperature as input. The soil physical submodel tends to overestimate the active layer depth. However, the measured active layer average value at the wet sites (0.45 cm) is within the range of the simulated ones (0.05 – 0.85 m).

The measured CH₄ fluxes range between 0 mg m⁻² hr⁻¹ and 20.8 mg m⁻² hr⁻¹ with a three year average value of 12.01 mg m⁻² hr⁻¹. For the 2005 and 2006 the averaged value is similar to that of simulations. The only exception is for the year 2004, when the measurement exceeds the simulation but remains in the error measurements (Figure 4-10).

The results show a good match with the averaged point measurements when PEATLAND-VU was run with the simulated water table (Figure 4-11). The fluxes vary between 0 mg m⁻² hr⁻¹ and 26 mg m⁻² hr⁻¹, with a three year average simulated flux of 10.5 mg m⁻² hr⁻¹. Similar to the simulations carried out with the measured water table, the active layer averaged value (0.45 cm) is within the range of the simulated one (0.05 – 0.85 m).
4.4. Discussion

Previous studies show that CH\textsubscript{4} emissions are highly influenced by the water table depth variation (Van Huissteden et al., 2005). Therefore, to better estimate the total CH\textsubscript{4} emission from arctic areas, it is necessary to have a very good estimation of the water table depth. Under global warming, permafrost areas are melting and disappearing, as is the case for Stordalen Mire (Christensen et al., 2004).

For the Swedish Stordalen site, the CH\textsubscript{4} emissions on a decadal time scale are mainly influenced by temperature changes in the past decades, which induced the melt of permafrost. This results in an increase in the active layer depth and larger variation in the water table dynamics. Under wetter conditions, the vegetation shifts from shrub dominated, elevated, ombrotrophic conditions to wet graminoid dominated more nutrient rich or minerotrophic, conditions.
Such a trend is observed at Stordalen, but is less dramatic than at other arctic mires, (e.g. Katterjokk), where permafrost has disappeared altogether over the period 1998-2002 (Christensen et al., 2004). The vegetation composition has changed significantly with a decrease in the permafrost-dependent, relatively dry elevated mire vegetation types and a corresponding increase in the lower wet graminoid dominated vegetation. This change corresponds to changes in the underlying permafrost distribution because the latter is determining the mire surface topography and hydrology, and hence the plant community structure (Christensen et al., 2004). Due to this change the \(\text{CH}_4 \) emissions increased from 1.8–2.2 mg m\(^{-2}\) hr\(^{-1}\) (1970; Christensen et al., 2004) to 4.7 mg m\(^{-2}\) hr\(^{-1}\) (averaged measured \(\text{CH}_4 \) flux 2004-2006).

The averaged simulated \(\text{CH}_4 \) fluxes for Stordalen range between 3.52 mg \(\text{CH}_4 \) m\(^{-2}\) hr\(^{-1}\) (measured WT) and 2.53 mg \(\text{CH}_4 \) m\(^{-2}\) hr\(^{-1}\) (simulated WT). For Siberia the averaged simulated \(\text{CH}_4 \) fluxes were much lower than the Swedish ones: 1.29 mg \(\text{CH}_4 \) m\(^{-2}\) hr\(^{-1}\) (measured WT) and 2.09 mg \(\text{CH}_4 \) m\(^{-2}\) hr\(^{-1}\) (simulated WT).

The mean soil temperature at Stordalen, for the years 2004-2006 was +3.76 °C, the mean temperature for the three years of measurement at the Siberian site was -12.8 °C. The difference in \(\text{CH}_4 \) flux between the two sites reflects the known sensitivity of methanogenesis to temperature and the longer growing season at the warmer Stordalen site (Walter, 2000). However \(\text{CH}_4 \) formation also may occur at subzero temperatures (Rivkina et al., 2000; Wagner et al., 2007) but winter emissions that may occur at negative temperatures are not included in the measurement data and the model.

The optimisation of the \(\text{CH}_4 \) model input parameters (\(\text{CH}_3 \) \(R_0 \) production rate, \(Q_{10} \) value for temperature correction \(\text{CH}_4 \) production) was done by optimizing the values until the optimum match between data and model was found. For both sites the plant oxidation factor was set to a value of 0.7. This means that 70 percent of the \(\text{CH}_4 \) is oxidized during the plant transport. For simulations at Stordalen mire a \(Q_{10} \) value of 4 was used, while for Kytalyk the value was set to 2 and 3 corresponding with the two water table approaches (see Table 4-3), the range of it being 1.7 – 16 (Walter, 2000). Together with \(R_0 \), the \(Q_{10} \) value influences the peak of the summer emissions relative to early spring and autumn. Since at Kytalyk no data throughout the growing season are available, tuning of the model parameter was focused on \(R_0 \) rather than \(Q_{10} \) (see Figure 4-7). In general, the model is not very sensitive to small differences in the value of \(Q_{10} \). We conclude that the model is more sensitive to the water table than to the temperature. This high sensitivity for water table position agrees well with statistical analysis of \(\text{CH}_4 \) flux data, soil temperatures and water table data from Kytalyk (Van Huissteden et al., 2005).

A good match was observed between the simulated and measured \(\text{CH}_4 \) fluxes using the simulated WT. One of the reasons might be the use of a continuous water table file (as simulated) with constant fluctuations from summer to winter throughout the three years in study. Even if the simulated water table is underestimated by Granberg’s (1999) model compared to the observations (Figure 4-5), the simulated \(\text{CH}_4 \) fluxes match with the measurements.

For the Kytalyk site, the simulated \(\text{CH}_4 \) fluxes match in both approaches with the averaged point measured \(\text{CH}_4 \). The fluxes are much lower than the ones from N Sweden and this may be due to: (1) shorter growing season (May-September) compared with a longer one at Stordalen (April-October), (2) lower soil temperature, (3) more \textit{Sphagnum} vegetation which lives in symbiosis with methanotrophic bacteria and consumes the \(\text{CH}_4 \) below the water table (Raghoebarsing et al., 2005) while the Stordalen wet site has \textit{Carex} and \textit{Eriophorum} spp., and (4) differences within the active layer depth.

Vegetation related factors influencing the \(\text{CH}_4 \) fluxes from floodplain are (1) plant mediated transport of \(\text{CH}_4 \) between the soils and atmosphere and (2) primary productivity (Van Huissteden
et al., 2005). Sedges are good transporters of CH$_4$ (Busch and Lösch, 1999). The CH$_4$ fluxes are related to the vegetation since the latter provides substrate for methanogens through root exudation (King and Reeburg, 2002). A recent study at Stordalen shows that sites dominated by *Eriophorum angustifolium* have higher CH$_4$ fluxes than those with *Eriophorum vaginatum* or *Carex rotundata* (Ström and Cristensen, 2007).

The variation within the CH$_4$ fluxes is strongly influenced by the hydrological conditions at each site. A smoother variation (see Figure 4-7) is observed for Stordalen CH$_4$ as the WT had a more constant behaviour (not many peaks, Figure 4-5). For the Siberian site the water table varied strongly (wet in 2004 and very dry in 2005 caused by the excessive drainage of the floodplain) therefore the emissions show a higher variability in time.

4.5. Conclusions

CH$_4$ fluxes from arctic wetlands show a high variability in time and space. Even if both sites are located in arctic areas, the differences are considerable. Both study sites are wetlands but the CH$_4$ fluxes have different patterns. We hypothesise that the cause for these differences are (1) water table depth (2) air and soil temperature (3) vegetation type and (4) net primary production. By using the simulated water table depth, it was possible to match the measured CH$_4$ emissions with the simulated ones, using a relatively simple bucket model to simulate the water table based on generic meteorological precipitation and temperature time series. Water table information may not always be available at high measurement resolution and accuracy. We have shown that with the Granberg’s (1999) modified model (Yurova et al., 2007) we could simulate the CH$_4$ flux correctly, even with absent (Kytalyk) observations or scattered measurements during the growing season (Stordalen). The results of our study are promising for improvement of regional scale CH$_4$ emission models. Parameter uncertainty at site level in wetland CH$_4$ process models is an important factor in large scale modelling of CH$_4$ fluxes. The CH$_4$ fluxes at the Kytalyk site appear less sensitive to temperature variation than to water table variation, in concordance with other studies (Moore et al., 1990; Roulet et al., 1991; Walter et al., 1996, van der Molen et al., 2007). This stresses the need for improving hydrological models to correctly simulate water table variations for modelling wetland CH$_4$ fluxes.