SYSTEMATIC REVIEW

Occupational therapy for community dwelling elderly people: a systematic review

ESTHER M. J. STEULTJENS1, JOOST DEKKER2, LEX M. BOUTER3, SANDRA JELLEMA4, ERICA B. BAKKER5, CORNELIA H. M. VAN DEN ENDE1

1Netherlands Institute for Health Services Research (NIVEL), PO Box 1568, 3500 BN Utrecht, The Netherlands
2Department of Rehabilitation Medicine, 3Institute for Research in Extramural Medicine (EMGO-institute), VU University Medical Center, Amsterdam, The Netherlands
4Amstelring Thuiszorg, Amstelveen, The Netherlands
5Department of Occupational Therapy, Division of Neurosciences Rehabilitation HP F00.811, University Medical Center Utrecht, Utrecht, The Netherlands
1Research Center where research project has been conducted

Address correspondence to: E. M. J. Steultjens. Email: e.steultjens@nivel.nl

Abstract

Objective: occupational therapy might play an important role in maintaining independent living for community dwelling elderly people. The aim of this systematic review is to determine whether occupational therapy improves outcome for people who are ≥60 years and are living independently.

Methods: an extensive search in MEDLINE, CINAHL, EMBASE, AMED and SCISEARCH until July 2002 was performed. Studies with controlled and uncontrolled designs were included. Six intervention categories were distinguished and individually analysed using a best-evidence synthesis, based on the type of design, the methodological quality, type of outcome measures and statistical significance of findings.

Results: 17 studies were included, ten of which were randomised clinical trials. Six randomised clinical trials had a high methodological quality. Strong evidence is present for the efficacy of advising on assistive devices as part of a home hazards assessment on functional ability. There is some evidence for the efficacy of training of skills combined with a home hazard assessment in decreasing the incidence of falls in elderly people at high risk of falling. Some evidence is available for the efficacy of comprehensive occupational therapy on functional ability, social participation and quality of life. Insufficient evidence is present for the efficacy of counselling the primary caregiver of dementia patients about maintaining the patient’s functional abilities.

Conclusion: this review shows that occupational therapy interventions for community dwelling elderly people results in positive outcomes. Future research in the efficacy of occupational therapy in elderly patient groups such as people with dementia is recommended. Furthermore, research into tailoring interventions to the needs of elderly patients is recommended.

Keywords: occupational therapy, aged, review literature, meta-analysis, elderly

Background

The increasing elderly population is one of the health care concerns in western societies. The ageing process is associated with decreasing functional abilities, lower quality of life and increasing health care costs for the community (Supplementary data, Appendix 4 available at http://www.ageing.oupjournals.org). Governmental policies aim at enhancing or maintaining independent living by providing services and care for community dwelling elderly people. Occupational therapy (OT) might be able to play an important role in reaching this aim.

Community dwelling elderly people are defined by their age (≥60 years of age) and by living independently. This group can suffer from a large variety of health care problems; from just getting older (not diseases specific) to suffering from multiple pathologies. Also, people with specific medical diagnoses that occur more frequently in an older population, such as stroke, osteoarthritis or dementia, are part of this population.

OT treatment focuses on increasing or maintaining functional independence, social participation and quality of life, both from a preventive perspective and a treatment perspective. A survey in the Netherlands showed that the majority of patients referred to OT in the general health care system were of older age (mean age 61 years) and suffered from a chronic condition [1]. Improving personal
care, domestic and locomotor abilities and enhancing physical independence and mobility were the most frequently chosen treatment goals for this population [1].

OT’s efficacy for older people has been reviewed before but none of these reviews addressed the community dwelling elderly people separately. Carlson et al. [2] incorporated studies concerning OT for institutionalised elderly people. Patterson et al. (Supplementary data, Appendix 5) reviewed the evidence for the efficacy of pre-discharge home visits conducted by the occupational therapist. Therefore, the objective of this systematic review is to determine whether OT improves or maintains outcomes for community dwelling elderly people.

Material and methods

Search strategy and selection criteria

An extensive search until July 2002 was conducted utilising the following resources: MEDLINE (1966), CINAHL (1982), EMBASE (1982), SCISEARCH (1974), AMED (1985), Cochrane Controlled Trials Register, and two Dutch libraries of medical and rehabilitation literature [Dutch National Institute Allied Health Professions (NPI), Netherlands Institute for Health Services Research (NIVEL)].

The computerised search strategy consisted of i) a search strategy for community dwelling elderly people, and ii) a search strategy for OT interventions (Supplementary data, Appendix 1). In addition, the reference lists of all identified studies were scanned and the corresponding authors of papers eligible for inclusion were contacted by mail to identify further studies. Based on title and abstract, the inclusion of articles was performed by two independent reviewers (EMJS, CHME). When in doubt the full article was read. Disagreements were resolved by discussion [3]. The applied inclusion criteria were: i) efficacy studies with either a controlled or an other than controlled design (ODs) such as pre-post tests or time-series. ODs were included because randomised controlled trials (RCTs)/controlled clinical trials (CCTs) are rare in the field of OT and because pilot studies can guide future research. ii) Studies evaluating OT interventions for community dwelling elderly people (≥60 years). This includes both OT interventions from a preventive perspective and interventions for older people having multiple pathologies. iii) Primary outcome domains: ‘functional ability’, ‘social participation’, ‘quality of life’, ‘incidence of falls’ or ‘time to institutionalisation’; or secondary ‘process’ measures, which are measures considered to be indicators of successful treatment: ‘sensory-motor functions’, ‘cognitive functions’ or ‘depression’. iv) Full-length articles.

Occupational therapy interventions were either regarded as ‘comprehensive OT’ (when all five specific intervention categories were part of the evaluated OT treatment) or were classified into five specific intervention categories: viz i) training of sensory-motor functions; ii) training of cognitive functions; iii) training of skills; iv) advice and instruction regarding the use of assistive devices; and v) counselling of primary care giver. This classification has its base in the International Classification of Functioning, Disability and Health (ICF) [4] and was used in other reviews on OT [5–7].

A group of four occupational therapists (including EMJS, SJ and EB) and reviewer CHME reached a consensus about this classification by assessing whether the interventions evaluated in each study could be regarded as OT and then allocating them to one of the intervention categories if this was the case. The criteria applied were that the intervention could have been part of an OT treatment plan and that the intervention was aimed at enhancing performance of daily activities. Disagreements were resolved by discussion. Studies evaluating multidisciplinary interventions including OT were excluded because the efficacy of OT cannot be stated in this type of research.

Methodological quality

The methodological quality of all studies was independently assessed by two reviewers (EMJS, SJ or EB). Disagreements were resolved by discussion. If no consensus was reached, a third reviewer (CHME) made the final decision. A list of methodological criteria recommended by Van Tulder et al. [3] was used for RCTs and CCTs. This list, containing all criteria proposed by Jadad (Supplementary data, Appendix 6) and Verhagen et al. (Supplementary data, Appendix 7), consists of 11 criteria for internal validity, six descriptive criteria and two statistical criteria (Supplementary data, Appendix 2). One modification was made regarding the specification of the criterion ‘eligibility’; viz the condition of interest (the impairment or disability that indicated referral to OT) was added as an eligibility criterion, as proposed by Wells (Supplementary data, Appendix 8). All 19 criteria were scored as ‘yes’, ‘no’ or ‘unclear’. Studies were considered to be of ‘high quality’ if at least six criteria for internal validity, three descriptive criteria and one statistical criterion were scored positively.

To rate the methodological quality of the ODs, Van Tulder’s list was modified with regard to some items inapplicable to ODs. These items were either removed (such as method of randomisation and allocation concealed) or reformulated (such as blinded assessor was reformulated to care provider not involved in outcome assessment) to make them applicable on one patient group design (Supplementary data, Appendix 2). The amended list of criteria consisted of seven criteria for internal validity, four descriptive criteria and two statistical criteria. OD studies were considered to be of ‘sufficient quality’ if at least four criteria for internal validity, two descriptive criteria and one statistical criterion were met.

Data analysis

Analysis of the results was performed separately for each intervention category. A standardised mean difference [SMD or Hedges’ g, with 95% confidence interval (CI)] was calculated for continuous variables, and odds ratios with corresponding 95% CI were computed for dichotomous variables. In cross-over trials without a wash-out period between intervention phases, data after the first phase was not included in the review. The primary analysis was focused on comparisons of an OT intervention group with a ‘no treatment’ control group. If a study compared the effect of more than the two intervention groups, however, two reviewers (EMJS, CHME) decided by consensus how these comparisons would be classified. In the particular case
Table 1. Best-evidence synthesis

<table>
<thead>
<tr>
<th>Strength of Evidence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong evidence:</td>
<td>Provided by consistent, statistically significant findings in outcome measures in at least two high quality RCTs*</td>
</tr>
<tr>
<td>Moderate evidence:</td>
<td>Provided by consistent, statistically significant findings in outcome measures in at least one high quality RCT and at least one low quality RCT or high quality CCTa (in the absence of high quality RCTs)</td>
</tr>
<tr>
<td>Limited evidence:</td>
<td>Provided by consistent, statistically significant findings in outcome measures in at least one high quality RCTa (in the absence of high quality RCTs) or low quality RCT (in the absence of high quality RCTs)</td>
</tr>
<tr>
<td>Indicative findings:</td>
<td>Provided by statistically significant findings in outcome and/or process measures in at least one high quality CCT or low quality RCTa (in the absence of high quality RCTs)</td>
</tr>
<tr>
<td>No or insufficient evidence:</td>
<td>In the case that results of eligible studies do not meet the criteria for one of the above stated levels of evidence</td>
</tr>
</tbody>
</table>

*If the amount of studies that show evidence is less than 50% of the total number of studies found within the same category of methodological quality and study design (RCTs, CCTs or ODs), we will state no evidence.

of the comparison of two interventions, the predominant contrast had to concern the OT treatment.

We anticipated finding too much diversity among the studies, in terms of interventions (duration, frequency, and setting) and outcome measures (diversity, presentation of the results) to make a quantitative analysis (meta-analysis) appropriate, and we therefore formulated a best-evidence synthesis. Our best-evidence synthesis is based upon the one proposed by Van Tulder et al. [8] and was modified for the purpose of this review by attributing levels of evidence to the efficacy of OT, taking into account the design of the studies, the methodological quality, the type of outcome measures and the statistical significance of the findings (Table 1). By excluding low quality studies, a sensitivity analysis was performed.

Results

The search strategy resulted in a list of 1,768 citations. A selection based on title and abstract obtained 147 full articles. Forty-five publications, presenting 38 studies, concerned the efficacy of OT in community dwelling elderly people, 17 of these studies fulfilling all inclusion criteria. Data from three included studies were presented in more than one article [9–12, Supplementary data, Appendix 9–13]. Seven studies (Supplementary data, Appendix 3, 1–7) were excluded because a single subject design was used, or non-community dwelling elderly people or persons younger than 60 years of age participated in the study, or since the outcome measures were beyond the scope of our review. Fourteen other excluded studies [Supplementary data, Appendix 3, 8–22] evaluated a multidisciplinary educational intervention with both OT and public health topics.

The methodological quality was assessed in 12 RCTs/ CCTs and five ODs (Supplementary data, Appendix 2). Six RCTs had high methodological quality. Two of the ODs had sufficient methodological quality. The raters disagreed on 24% of the items. Specifically the items ‘co-interventions’, ‘adverse effects’ and ‘intention to treat analysis’ were scored differently. All disagreements were resolved after discussion.

Results of studies that contribute to the outcome of the best-evidence synthesis will be presented separately for each intervention category.

Comprehensive OT

One high quality RCT [9, 10] (Table 2) evaluated OT treatment for independent, living-well, elderly people. Nine months after baseline randomisation statistically significant effect sizes were reported on functional ability (SMD: 0.42 [0.08; 0.77], Table 3), social participation (SMD: 0.48 [0.14; 0.82], not in Table) and quality of life (SMD 0.26 [0.02; 0.50]). Fifteen months after baseline randomisation the outcome for quality of life remained statistically significant (SMD 0.48 [0.13; 0.83], not in Table), whereas the effect sizes for functional ability (SMD 0.32 [0.03; 0.67], not in Table) and social participation (SMD 0.21 [−0.05; 0.46], not in Table) were no longer statistically significant.

There is limited evidence, therefore, for the efficacy of occupational therapy on functional ability, social participation and quality of life in independent, living-well, elderly people.

Training of skills combined with instruction in the use of assistive devices

Three RCTs [11–13] and two ODs [14, 15] evaluated an intervention in which instructions in the use of assistive devices was combined with training of skills strategies (Table 2). Two RCTs [11, 12] had a high methodological quality.

Both high quality RCTs [11, 12] and the low quality RCT [13] measured the incidence of falling. One high quality RCT [11] reported a statistically significant decrease in falls in elderly people who are at high risk of falling (Table 3). The low quality RCT [13] also measured functional ability for which both after six (Table 3) and 12 months (SMD 2.51 [1.83; 3.20], not in table) statistically significant effect sizes were presented.

Limited evidence exists, therefore, for the efficacy of training of skills combined with the instruction in the use of assistive devices on decreasing the incidence of falls in elderly people at high risk of falling. Furthermore, there are indicative findings that this intervention is effective in maintaining functional ability.
Table 2. Characteristics of included studies

<table>
<thead>
<tr>
<th>First author</th>
<th>N</th>
<th>Methods</th>
<th>Inclusion criteria</th>
<th>Intervention</th>
<th>Outcome measures</th>
<th>Duration of intervention</th>
</tr>
</thead>
</table>
| Clarke [9, 10] | 361 | RCT | Independent living, >60 years, capacity to benefit from involvement OT | I1: OT programme
I2: Social control group
R: no treatment
Outpatients | Functional status questionnaire
Life satisfaction index
Rand SF36 | 11, 12: 2–2.5 hours
a week for 9 months
group sessions, maximum
9 hours individual OT |
| Cumming [11] | 530 | RCT | ≥65 years, living in community, excluded if OT visit was part of usual care | I: OT home assessmenta
R: usual care, no OT home visit
In-, out- and day care patients | Falls | I: 1 hour assessment and telephone follow-up |
| Pardessus [13] | 60 | RCT | ≥65 years, hospitalised for falling, able to return home, MMSE ≥24 | I: OT home assessmenta
R: no treatment
Outpatients | SMAF
Falls | I: 2 hour assessment |
| Stevens [12] | 1737| RCT | ≥70 years, living independently, no adaptation of house previously | I: OT home assessmenta
R: no intervention
In community | Falls | I: 1 home visit |
| Gitlin [14] | 34 | OD | Referred to Tag Adept, no specific devices asked, ≥3 chronic conditions | I: OT home assessmenta
At home | ADL-index | I: 2 home visits |
Inpatient + at home | Klein-Bell ADL scale | I: 12 hours per patient in total |
| Cameron [16] | 144 | RCT | >74 years, ≥2 falls previously, live in own home | I: Hip-protector wear
R: no treatment
At home | FES (fear of falling in nine ADL activities) | I: daily when out of bed for 2 years |
| El Faizy [19] | 28 | CCT | ≥60 years, non-institutionalised | I: home-safety assessmentb
R: home visit no safety assessment
At home | Falls | I + R: 1 hour home visit |
| Gottlieb [20] | 159 | CCT | ASAP client, potential benefit assistive devices, remain independent | I: provision assistive devices
R: no treatment
At home | ADL, Perceived difficulty scale | I: 3 home visits |
| Hart [17] | 79 | RCT | ≥85 years, living in own home, no aids supplied previously | I: home assessment aids provided
R: home assessment no aids provided
At home | ADL-scale | I + R: 1 home assessment |
Table 2. continued

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Follow-up</th>
</tr>
</thead>
</table>
| Liddle [18] | 105 RCT | ≥65 years, living independently | I1: home assessment aids provided
I2: home assessment no aids provided
R: home visit
At home | Barthel Index
Sickness impact profile
Life satisfaction index | Daily for 3 months |
| Cooper [21] | 6 OD | ≥65 years, living independently, Barthel Index ≥60 | I: Transfer pole with colour cue or grey hand-grip
R: home visit
At home | Barthel Index | Daily for 3 months |
| Cooper [22] | 30 OD | Elderly women, independent living, Barthel Index ≥60 | I1: transfer pole with colour cue
I2: transfer pole with colour cue
I3: transfer pole without colour cue
R: home visit
At home | Barthel Index | Daily for 3 months, colour cue changed each month for group I1 and I2 |
| Sonn [23] | 27 OD | ≥70, living independently, no dementia | I1: Home safety assessment
I2: home assessment
At home | ADL, estimated degree of difficulty | 1 home visit |
| Counselling of primary care giver | | | | | |
| Burgener [24] | 54 RCT | Home dwelling patient with Alzheimer’s disease or multi-infarct dementia + primary care giver | I1: educational + behavioural programme
I2: educational programme
I3: behavioural programme
R: no treatment
At home | ADL scale, functional behaviour care recipient | I1, I2, I3: 1 × 90 minutes home instruction |
| Gitlin [25] | 202 RCT | Care giver lives with dementia patient, patient dependent in ADL | I: OT treatment
R: Usual care
At home | Functional independence measure patient
Functional independence measure patient
Functional independence measure patient | I: 5 visits; every other week for 3 months |
| Gitlin [26] | 255 RCT | Care giver lives with dementia patient, patient dependent in ADL | I: Environmental skill building
R: Usual care
At home | | 5 × 90 minutes home training |

OT = Occupational therapy; RCT = Randomised clinical trial; CCT = Controlled clinical trial; OD = other than controlled design; I = intervention group; R = reference group; SMAF = functional autonomy measurement system.

*The home assessment included instructions for skill performance.

bHome safety assessment included the provision of aids.
Advice and instruction regarding the use of assistive devices

Three high methodological quality RCTs [16–18], two low quality CCTs [19, 20] and three ODs [21–23] evaluated the efficacy of a home assessment which included the provision of assistive devices (Table 2). Two ODs [21, 23] were of sufficient quality.

The three high quality RCTs [16–18] measured functional ability. Two RCTs [16, 17] reported statistically significant effect sizes (Table 3).

Consequently, there is strong evidence for the efficacy of a home assessment with incorporation of the provision of assistive devices on increasing functional ability.

Counselling of primary care giver

Three low methodological quality RCTs [24–26] evaluated a counselling intervention for the primary care giver of elderly patients with dementia.

These studies measured the functional ability of the dementia patients. One RCT [25] reported a statistically significant effect size between the intervention and the control group (Table 3).

There is insufficient evidence, therefore, for the efficacy of counselling of the primary care giver of patients with dementia on maintaining or enhancing functional abilities of those patients.

Discussion

This systematic review explored the efficacy of several occupational therapy interventions for community dwelling elderly people. Six intervention categories were individually analysed for their efficacy on the outcome measures of functional ability, quality of life and the incidence of falling. This review established strong evidence for the efficacy of advising assistive devices as part of a home hazard assessment on functional ability. Limited evidence was found for the efficacy of advising assistive devices combined with training of skills strategies in decreasing the incidence of falls in elderly people at high risk of falling. Furthermore, limited evidence was established for the efficacy of comprehensive OT on functional ability, social participation and quality of life. Insufficient evidence was found for the efficacy of counselling the primary caregiver of dementia patients in maintaining the patient’s functional abilities.
The results on functional ability, social participation and quality of life are consistent with the conclusions presented by Carlson et al. [2]. In their meta-analysis on occupational therapy for mainly institutionalised older persons they presented a statistically significant effect size (0.51) for functional and psycho-social outcomes. The results on falling support the conclusions on home hazard assessment interventions presented by Gillespie et al. [27]. They concluded in their Cochrane review that professionally prescribed home hazard assessment and modifications are effective in reducing falls. The results of these three reviews, covering specific health services for elderly people, show the same tendency towards efficacy. So, there is convincing evidence that occupational therapy for elderly people can result in positive outcomes on functional ability and the prevention of falls.

The results from this ‘broad scope’ systematic review should be considered regarding the possibility of bias to positive outcomes related to the used approach of data-synthesis. Original studies were too heterogeneous to perform a meta-analysis. A best-evidence synthesis incorporating methodological quality, statistical significance of results and type of design was applied. This best-evidence synthesis seems to be a strict one and did, in another review [5], not lead to more positive results than the meta-analysis approach. Another limitation could be the inclusion of several primary outcomes. There is not one primary outcome that reflects the aims of OT and no consensus is established about a ‘core set’ of outcomes within the profession. The chosen outcomes domains are consistent with other reviews on the efficacy of OT (Supplementary data, Appendix 15) and were separately analysed. However, the use of several outcomes enhances the possibility of positive results.

Because of the choices made in this review, the conclusion that there is insufficient evidence for the efficacy of ‘counselling of primary caregiver’ should be critically reflected. Our review focused on the benefit of OT for elderly patients and did not incorporate outcomes related to the caregiver. However, the main goal of counselling of the primary caregiver intervention is not only to maintain or increase the patient’s functional abilities, but also to reduce caregiver distress in handling behaviour problems in dementia patients when performing activities of daily living. Important outcome measures such as handling difficult patients’ behaviour and well-being of the caregiver were not incorporated in our review. So, to address the efficacy of OT counselling of the primary-caregiver, future reviews should be expanded with these important outcome measures.

The search strategy in this review aimed at finding OT studies for community dwelling elderly people. This included both healthy elderly people who received OT from a preventive perspective and people aged 60 or older with a large variety of diseases and co-morbidities. Diagnosis-specific keywords were not incorporated in the search strategy, for this would have extended the strategy too much. Therefore, it might be possible that studies evaluating interventions for elderly people with a specific diagnosis that would be eligible for inclusion in this review were not retrieved because studies might not have been indexed as ‘aged’ or as ‘frail elderly’ studies. On the other hand, studies about the efficacy of OT for important patient categories such as stroke, rheumatoid arthritis, Parkinson’s disease and multiple sclerosis [5–7, 28] were known to the reviewers and were considered for inclusion in this review. So, it is not likely that key publications about the efficacy of OT for community dwelling elderly people were missed.

In our review we made a distinction between interventions solely aimed at advising and instructing the use of assistive devices, and interventions aimed at advising and instructing the use of assistive devices combined with training of skills. The difference between both categories is that the latter incorporates the adaptation of skills. By means of a careful analysis of activities of daily living, the occupational therapist adapts skills or activities to the individual demands to improve ADL performance [29, Supplementary data, Appendix 14]. This main OT feature reflects the client-centred problem-solving attitude of OT. Van Haastregt et al. [30] concluded in their review about preventive home visits that tailoring the interventions to the needs of the subjects involved might be an important aspect of the effectiveness of interventions. Also, the results found in the RCT on comprehensive OT for independent-living older adults [9] suggest that the OT profession’s emphasis on occupation is the main determinant for the efficacy reported. Thus, one can hypothesise that this feature is one of the most important determinants of the efficacy of OT. Further research into this topic would be worthwhile.

In conclusion, this review shows that comprehensive occupational therapy and specific OT interventions including training of skills and the instruction of assistive devices in later years result in positive outcomes on functional ability. Future research in the efficacy of occupational therapy for specific elderly patient groups, like people with dementia, is recommended. Furthermore, research into specific features of OT interventions, such as tailoring interventions to the needs of patients, might contribute to enforcing the efficacy of OT in community dwelling elderly people.

Key points

- Comprehensive occupational therapy can be effective in maintaining functional ability, social participation and quality of life for community dwelling elderly people.
- Home hazards assessment by an occupational therapist is effective in increasing functional ability.
- Occupational therapy can be effective in decreasing falls in elderly at high risk of falling.
- Research on the efficacy of occupational therapy for dementia patients living in the community is needed.

Acknowledgements

The authors would like to thank Mrs C. van de Steeg for discussing occupational therapy issues and Mrs E. Breuning for making the search strategy applicable to the several databases.
E. M. J. Steultjens et al.

Funding

This study is funded by a grant (grant number 00–04) from the Dutch Health Care Council (College voor Zorgverzekeringen (CVZ)).

References

For additional references see Supplementary data, Appendix 4–15 available at http://www.ageing.oupjournals.org.

Received 10 June 2003; accepted 7 April 2004