Contents

Chapter 1: Introduction ... 1
1.1 Precision spectroscopy 1
 1.1.1 Introduction .. 1
1.2 Applications of precision spectroscopy 3
 1.2.1 Ion clocks ... 3
 1.2.2 Variation of the fine-structure constant 4
 1.2.3 Quantum computing 5
 1.2.4 The calcium ion 6
1.3 Outline ... 7

Chapter 2: Ion traps ... 9
2.1 The Paul trap .. 9
 2.1.1 The first Paul trap 9
 2.1.2 The potential in an infinite linear Paul trap 10
 2.1.3 The pseudopotential, secular- and micromotion 14
2.2 Cold trapped ions .. 16
 2.2.1 Laser cooling 16
 2.2.2 Sympathetic cooling 22
 2.2.3 Heating rates 23
 2.2.4 The ion crystal 25
2.3 Experimental setup 28
 2.3.1 Trap A: Unsegmented linear Paul trap, with ring-shaped endcaps 28
 2.3.2 Trap B: Segmented linear Paul trap 31
 2.3.3 Helical resonators 36
 2.3.4 Loading the trap with calcium ions 37
 2.3.5 Laser cooling of calcium ions 38
 2.3.6 Detection of fluorescence 39

Chapter 3: The frequency comb laser 45
3.1 The principle of a frequency comb laser 45
3.2 Principle of operation 47
 3.2.1 The AC Kerr effect and the mode-locked laser 47
3.2.2 Group velocity dispersion and chirped mirrors 48
3.2.3 The non-linear Schrödinger equation 50
3.3 Ti:Sapphire frequency combs based on commercial negative GVD mirrors 53
3.3.1 Laser design 53
3.3.2 Locking the carrier-envelope offset and repetition frequency 57
3.3.3 Scanning a frequency comb 61

Chapter 4: Precision spectroscopy and the frequency comb 65
4.1 Accuracy and stability 66
4.2 Calibrating a probe laser against the frequency comb 67
4.3 Direct frequency comb spectroscopy 70
4.3.1 Atomic one- and two-photon transitions 70
4.3.2 Molecular fingerprinting 72
4.3.3 Multiphoton spectroscopy 74

Chapter 5: Frequency metrology on calcium ions 77
5.1 Introduction 77
5.2 Experimental setup and procedures 78
5.2.1 Ion production and trapping 78
5.2.2 Doppler cooling to ion cloud crystallization 79
5.2.3 Spectroscopy and absolute frequency calibration 81
5.2.4 Results 84
5.3 Conclusions 88

Chapter 6: Direct frequency comb spectroscopy of trapped ions 91
6.1 Introduction 91
6.2 Experimental setup and procedures 92
6.2.1 Ion trapping 92
6.2.2 Doppler cooling to ion cloud crystallization 93
6.2.3 Absolute frequency calibration 94
6.2.4 Results and systematic effects 99
6.3 Conclusion 100

Chapter 7: Direct frequency-comb spectroscopy of a dipole-forbidden
clock transition in trapped $^{40}\text{Ca}^+$ ions 101
7.1 Introduction 101
7.2 Experimental setup and procedures 102
7.2.1 Ion trapping and laser cooling 102
7.2.2 Frequency calibration 103
7.2.3 Results and systematic effects 106
7.3 Improvements towards building an ion clock 108
7.4 Conclusions and outlook 109

Bibliography 111
Summary 127
Samenvatting 131
List of publications 135
Dankwoord 137