Contents

I. General introduction 1

II. A detailed study on the effects of noise on speech intelligibility 5

2.1 SIGNAL PROCESSING 8
 2.1.1 Signal analysis: the three noise effects 9
 2.1.2 Signal analysis and resynthesis for the listening experiments 11

2.2 MEASUREMENTS 14

2.3 DISCUSSION 15
 2.3.1 The MIF and the STI model 15
 2.3.2 Spectral subtraction and the second noise effect 17

2.4 CONCLUSIONS 21

III. The concept of signal-to-noise ratio in the modulation domain and speech intelligibility 23

3.1 RATIONALE AND INTRODUCTION OF (S/N)_{mod} 25
 3.1.1 Speech envelopes and the concept of the useful modulation area 25
 3.1.2 Spectral subtraction and the modulation floor 28
 3.1.3 Concept of (S/N)_{mod}, the signal-to-noise ratio in the modulation domain 32

3.2 VERIFICATION OF THE RELEVANCE OF (S/N)_{mod} 36
 3.2.1 Spectral subtraction and speech intelligibility 37
 3.2.2 Deterministic and noise induced modulation reduction 37
 3.2.3 Compression and expansion of noisy speech 40

3.3 DISCUSSION 42
 3.3.1 STI and intelligibility of noisy speech 44

3.4 CONCLUSIONS 44

IV. The effect of varying the signal-to-noise ratio in the modulation domain on speech intelligibility in noise 47

4.1 DEFINING THE PROBE SIGNAL FOR ESTIMATING THE MODULATION RATIO 51

4.2 MANIPULATING THE MODULATION RATIO USING THE NOISE-FREE SIGNAL 56
 4.2.1 Manipulating the modulation ratio for the speech-matched probe 56
 4.2.2 Application to speech-plus-noise signals 58

4.3 MANIPULATING THE MODULATION RATIO WITHOUT USING A PRIORI KNOWLEDGE 60
 4.3.1 Manipulating the modulation ratio for the speech-matched probe 60
 4.3.2 Application to speech-plus-noise signals 61

4.4 DISCUSSION 66

4.5 CONCLUSIONS 70